Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supplementary information

Underestimated photoactive area in organic solar cells based on a ZnO interlayer

Zhi Chen^a, Jie Wang^a, Hui Jin^a, Jianming Yang^b, Qinye Bao^b, Zaifei Ma^{a,*}, Wolfgang Tress^c and Zheng Tang^{a,*}

^{*a*}State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China

^bKey Laboratory of Polar Materials and Devices, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, P.R. China

^cInstitute of Computational Physics, Zurich University of Applied Sciences, Wildbachstr. 21, 8401 Winterthur, Switzerland

Email: <u>ztang@dhu.edu.cn</u>; <u>mazaifei@dhu.edu.cn</u>

Figure S1. JV characteristic curves and performance parameters for the ZnO based solar cells with the ZnO interlayers grown at different relative humidity and an annealing temperature of 200 °C.

Figure S2. Spectra irradiance of the LED (Newport Oriel VeraSol-2TM Class AAA) and the xenon lamp (Newport Oriel Sol3A TM) based solar simulators used in this work, compared to the AM1.5G spectrum.

Figure S3. UPS spectra for the ZnO interlayers grown at different annealing temperatures.

Figure S4. a) JV characteristic curves and **b)** EQE of the solar cells based on PTB7-Th:PC₇₁BM with the ZnO interlayers grown at different annealing temperatures, before and after the UV treatment.