### CN-Substituted Ortho-terphenyl Core Based High Triplet Energy Bipolar

## Host Materials for Stable and Efficient Blue TADF Device

Hyuna Lee<sup>a1</sup>, Jun Hyuk Park<sup>b1</sup>, Ki Joon Yang<sup>a</sup>, Soon Jae Hwang<sup>a</sup>, Ramanaskanda Braveenth<sup>a</sup>

Tae Hoon Ha<sup>b</sup>, Min I Han<sup>b</sup>, Chil Won Lee<sup>\*b</sup> and Jang Hyuk Kwon<sup>\*a</sup>

a Organic Optoelectronic Device Lab. (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea

b Department of Chemistry, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea

E-mail: chili@dankook.ac.kr, jhkwon@khu.ac.kr

## Supplementary information

# 

## 2. List of figures

| Figure                         | S1:                                  | <sup>1</sup> H                         | NMR                 | of                  | oCN-OTP             |
|--------------------------------|--------------------------------------|----------------------------------------|---------------------|---------------------|---------------------|
| Figure                         | S2:                                  | <sup>13</sup> C                        | NMR<br>4            | of                  | oCN-OTP             |
| Figure S3: H                   | IRMS of <i>o</i> CN-C                | ОТР                                    |                     |                     | 4                   |
| Figure S4: <sup>1</sup> H      | HNMR of <i>m</i> CN-                 | ОТР                                    |                     |                     | 5                   |
| Figure S5: <sup>13</sup>       | <sup>3</sup> C NMR of <i>m</i> CN    | N-OTP                                  |                     |                     | 5                   |
| Figure S6: H                   | IRMS of <i>m</i> CN-O                | ОТР                                    |                     |                     | 6                   |
| Figure S7: C                   | Cyclic Voltamme                      | etry (CV) cure o                       | f DCz-OTP, oCN-     | OTP and <i>m</i> CN | -OTP6               |
| Figure S8: T                   | GA and DSC gr                        | aphs of DCz-O                          | TP, oCN-OTP and     | <i>m</i> CN-OTP     | 7                   |
| <b>Figure S9:</b> STADF dopar  | Spectral overlap<br>nt               | between PL er                          | nission of three ho | ost and absorp      | tion of DBA-DI<br>7 |
| <b>Figure S10:</b> DBA-DI in D | Comparison of OCz-OTP, <i>o</i> CN-( | phosphorescen<br>OTP and <i>m</i> CN-( | ce spectra in tolue | ene and film T      | `RPL of 30% of      |
| Figure S11:                    | Device lifetimes                     | s of <i>m</i> CN-OTP                   | host device depend  | ling on the thic    | kness of ETL8       |
| Figure S12: cationstates       | Calculation of E                     | Sond dissociatio                       | on energies of host | materials in no     | eutral, anion, and  |

#### **1. Experimental Details**

#### 1.1 General information

All reagents were purchased from commercial suppliers and used as received. All solvents were used without additional purification. To verify molecular structures of the synthesized materials, <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum was measured using Bruker Avance III-400 NMR spectrometer. High-resolution mass spectra were performed using JMS-700 (JEOL, Japan) Gas Chromatography-Mass spectrometer. The transient PL decay was measured using the Quantaurus-Tau fluorescence lifetime measurement system (C11367-03, Hamamatsu Photonics Co.) in a nitrogen-filled atmosphere.

## 2. List of figures



Figure S1. <sup>1</sup>H NMR of *o*CN-OTP.



Figure S2. <sup>13</sup>C NMR of *o*CN-OTP.





Figure S3. HRMS of *o*CN-OTP.



Figure S4. <sup>1</sup>H NMR of *m*CN-OTP.



Figure S5. <sup>13</sup>C NMR of *m*CN-OTP.



Figure S6. HRMS of *m*CN-OTP.



Figure S7. Cyclic Voltammetry (CV) cure of DCz-OTP, oCN-OTP and mCN-OTP.



Figure S8. TGA and DSC graphs of DCz-OTP, *o*CN-OTP and *m*CN-OTP.



**Figure S9.** Spectral overlap between PL emission of three host and absorption of DBA-DI TADF dopant.



**Figure S10.** (a) Comparison of phosphorescence spectra of DCz-OTP, *o*CN-OTP, *m*CN-OTP and DBA-DI in toluene and (b) film TRPL of 30% of DBA-DI in DCz-OTP, *o*CN-OTP and *m*CN-OTP. (c) exponential fitting curve for determining decay time.



Figure S11. Device lifetimes of *m*CN-OTP host device depending on the thickness of BPPB at initial luminance of  $1,000 \text{ cd/m}^2$ .



**Figure S12.** Calculation of Bond dissociation energies of host materials in neutral, anion, and cation states.