Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Efficient hole transport layers based on cross-linked poly(N-vinylcarbazole) for high-

performance perovskite photodetectors

Lijuan He, Deyu Wang, Yan Zhao, Yiqi Zhang, Wei Wei*, Liang Shen*

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

*Corresponding authors.

E-mail addresses: weiweiee@jlu.edu.cn (W. Wei); shenliang@jlu.edu.cn (L. S.).

Supporting Information

Figure S1. J-V characteristics curves of perovskite photodetectors on 5wt%, 10wt% and 15wt% F4TCNQ-doped PVK HTLs, respectively.

Figure S2. Absorption and transmission spectra of cross-linked PVK films with 5wt%, 10wt% and 15wt% F4TCNQ, respectively.

Figure S3. Contact angle images of water on (a) 5wt% F4TCNQ-doped PVK, (b) 10wt% F4TCNQ-doped PVK and (c) 15wt% F4TCNQ-doped PVK films.

Figure S4. Top-view SEM images of perovskite films on (a) 0wt%, (b) 5wt%, (c) 10wt% and (d) 15wt% F4TCNQ-doped PVK layers, respectively.

Figure S5. Absorption and transmission spectra of perovskite films based on 0wt%, 5wt%, 10wt% and 15wt% F4TCNQ-doped PVK layers, respectively.

Figure S6. Photoluminescence (PL) spectra of perovskite films based on cross-linked PVK HTLs with different F4TCNQ doping concentration of 5wt%, 10wt% and 15wt%, respectively.

Figure S7. Time-resolved PL spectra of perovskite films based on 5wt%, 10wt% and 15wt% F4TCNQ-doped PVK layers, respectively.

Table S1. PL decay lifetimes of perovskite films based on 0wt%, 5wt%, 10wt% and 15wt%

F4TCNQ-doped PV	/K layers.
-----------------	------------

PVK treatment	0wt% F4TCNQ	5wt% F4TCNQ	10wt% F4TCNQ	15wt% F4TCNQ
τ1 (ns)	21.414	17.464	14.278	21.973
τ2 (ns)	26.173	21.345	17.452	26.856

Figure S8. J_{SC} dependence of light intensity curves of perovskite photodetectors on 5wt%, 10wt% and 15wt% F4TCNQ-doped PVK HTLs, respectively.

Figure S9. V_{OC} dependence of light intensity curves of perovskite photodetectors used 5wt%, 10wt% and 15wt% F4TCNQ-doped PVK as HTLs, respectively.

Figure S10. EQE spectra of perovskite photodetectors on 5wt%, 10wt% and 15wt% F4TCNQdoped PVK HTLs, respectively.

Figure S11. Responsivity (*R*) curves of perovskite devices based on 5wt%, 10wt% and 15wt% F4TCNQ-doped PVK HTLs, respectively.

Figure S12. Noise current curves of devices used 5wt%, 10wt% and 15wt% F4TCNQ-doped PVK as HTLs, respectively.

Figure S13. Transient photocurrent (TPC) curves of perovskite devices with 5wt%, 10wt% and 15wt% F4TCNQ-doped PVK HTLs, respectively.

Figure S14. Specific detectivity (D^*) curves of perovskite devices with 5wt%, 10wt% and 15wt% F4TCNQ-doped PVK HTLs, respectively.