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S1. EDS measurements: estimation of Yb3+/Er3+ dopant ratios.

Fig. S1. (A-D) EDS spectrum for NaYF4:Er3+,Yb3+ nanoparticles with representative Yb3+/Er3+ dopant ratios: (A) Ratio 0. (B) Ratio 0.1. (C) Ratio 1.
(D) Ratio 4. (E) Table including the atomic percent of lanthanides present into the nanoparticle unit cell obtained from EDS analysis.



S2. TEM images showing nanoparticle size histograms for UCNPs with different Yb3+/Er3+ ratios.

Fig. S2. TEM sizes for different Yb/Er ratios: (A) Ratio 10. (B) Ratio 8. (C) Ratio 4. (D) Ratio 1. (E) Ratio 0.25. (F) Ratio 0.12. (G) Ratio 0.1. (H)
Ratio 0.



S3. XRD measurements: crystalline phase for UCNPS with different Yb3+/Er3+ ratios.

Fig. S3. XRD pattern for different Yb/Er ratios in agreement with the literature reference for β -NaYF4 crystal (Joint Committee on Powder Diffraction
Standards file number 28-1192)



S4. Parameter values used in the theoretical model.

The parameter values used in the theoretical model are similar to those found in literature1–4. Moreover, some of
them were used as control parameters to correctly reproduce the experimental results. Er3+ ions in the metastable level
1 (4I13/2) (see Fig. 6) radiatively decay to the ground state 4I15/2 with a decay time of 1/W1 = 4 ms while Yb3+ ions in
level 1 (see Fig. 6) decay to the ground state with a decay time of 1/WY

1 = 2 ms. The other energy levels of Er3+ ions
present two contributions, a radiative decay rate to the ground state in the millisecond range (1/W20 = 2 ms, 1/W30 = 1 ms,
and 1/W40 = 1 ms) and a faster nonradiative decay rate to the next lower level (partially due to multi-phonon relaxation)
which is within the microsecond range. Here, we used an intrinsic quantum yield for the green level 4 (see Fig. 6),
η0 = W40/(W40 +W43) ' 0.06, which leads to W43 = 1.6× 104 s−1. For simplicity, we took the same value for the rest of
nonradiative decay rates, W32 =W21 =W43 (see Fig. 6). Furthermore, the following values for the resonant energy transfer
parameters are considered. Concerning the energy transfer from Yb3+ to Er3+ ion (see Fig. 6), we set K2 = 5× 10−17

cm3 s−1, a similar value for the back energy transfer KB2 = K2, and a lower value for K4 = 0.5K2. Taking into account our
experimental results that indicate that both UCL emission bands have the same behavior with the Yb/Er ratio, we assume
that the main population pathway for the red-emitting level is through the green-emitting level. Therefore, we neglected in
the simulations the energy transfer from level 4I13/2 (K3 = 0) and also the excited state absorption from this level (σ13 = 0)
(see Fig. 6). The energy transfer coefficients between neighbors Er3+ ions (see Fig. 6) were taken C1 = 1.2× 10−17

cm3 s−1 and C2 = 1.8× 10−17 cm3 s−1. The absorption cross-section of the Yb3+ transition σY = 1.7× 10−20 cm2 is much
larger than the corresponding to the Er3+ transition σ02 = 0.68×10−21 cm2. The excited state transition from level 4I11/2

to the green-emitting level (see Fig. 6) is similar to the previous one, i.e, σ24 = σ02. With these values, we obtained a
saturation intensity of IY

sat = 3 kW/cm2 for the Yb3+ transition and a much larger saturation value for the corresponding
Er3+ transition Isat = 75 kW/cm2. For the range of excitation laser powers used in our experiments, we operate below and
above the saturation value of Yb3+ transition but very far away from the saturation value of Er3+ transition. Therefore,
the behavior of the luminescence with the laser power is expected to be different for very low Yb/Er ratios (absorption of
Er3+ ions without saturation) than for high ones (absorption of Yb3+ ions with possible saturation). To numerically study
the effect of the Yb/Er ratio in the luminescence of the UCNPs, we varied the concentration of Er3+ and Yb3+ dopants
accordingly with the Yb/Er ratios. To estimate the concentration of Er3+ (NEr) and Yb3+ (NY b) ions, we followed the
molecular weight calculation of UCNPs by Mackenzie et al.5 We used the hexagonal crystal lattice parameters ah = 0.596
nm and ch = 0.353 nm to calculate the volume of a unit cell in the UCNP (uV ' 0.1086 nm3). Then, we took into account
the fractional percentage of RE dopants fRE (RE = Y b and Er) to compute the RE ion concentration NRE = 1.5 fRE/uV .
We solved Equation 1 using an explicit Runge-Kutta method in MatLab6 considering that all population is initially in
the ground states (N0 = NEr and NY

0 = NY b). After an initial transient, the system reached the steady-state, and the final
populations allowed us to compute the luminescence intensity.



S5. Derivation of the analytical expression for the population of the excited states in the low excitation signal
regime

We analytically solved the rate equation model (Equation 1 in Sec. 3.3) in the steady state (time derivatives set to
zero) by considering the small excitation signal regime, i.e., I/IY

sat � 1. In this case, most of the population remains in the
ground state (N0 ' NEr and NY

0 ' NY b) and the population of the excited states are obtained linearizing the Equation 1 in
Sec. 3.3 as follows:
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where NY
1 , N1 and N2 are first-order perturbations and N3 and N4 are second-order perturbations in the excitation intensity

respectively. We have not included the processes neglected in our simulations (K3 = 0 and σ13 = 0, see Sec. S4 in ESI) and
the contribution of ESA (σ24 = 0) which has been found to be negligible in comparison with Er-Er-ETU (see Figure 7A).
From the above linear system of equations (Equation S1) we obtained the analytical steady state populations:
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These analytical expressions (Equation S2) allow us to theoretically analyze the UCL and DCL emission intensity. In
Figure S5 we compare the analytical populations given by Equation S2 (colored solid lines) with the result obtained by
numerically solving Equation 1 in Sec. 3.3 (colored open circles) in the case of low excitation intensities (I/IY

sat = 0.001). A
perfect agreement is observed. Furthermore, we also plotted (black solid lines) the experimental power law obtained for
the DCL and UCL intensities with the Yb/Er ratio (exponent 0.6 for DCL and 1.4 for UCL from Figure 3B and 3D). Both,
the numerical simulations and the analytical result from Equation S2, nicely match with the experimental behavior.

With the aim of obtaining a very simple and direct expression for the populations N1 and N4 as a function of the Yb/Er
ratio we further simplified Equation S2. We first simplified the population of the Yb3+ excited state 2F5/2, NY

1 in Equation
S2, by taking into account that WY

1 +K2NEr ' K2NEr and that the second term of the right hand side of NY
1 is smaller than

the first term since (W2+KB2NY b)/(KB2NEr)> σ02/σY . Then, we simplified N2 in Equation S2 by keeping only the first term
of the right hand side, which is larger than the second one while NY b/NEr > (σ02/σY )W2/(W2 +KB2NY b), which takes place
in most of the analyzed ratios. Therefore, the population equations remain:
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We also plotted in Figure S5 the analytical populations given by Equation S3 (colored dashed lines), which still show
a good agreement with the numerical simulations. More interestingly, these analytical population equations allowed us
to nicely reproduce the enhancement of the DCL and UCL intensity found in the experiments. In particular, the best
agreement between Equation S3 and the experimental power law behavior is found for ratios within the intermediate
range [0.2−1.0] (see Figure S5). Therefore, we can analytically write simple dependencies for the populations N1 and N4

on the Yb/Er ratio (referred as to r) valid within this range:
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Fig. S5. Steady state populations for the green (N4) and NIR (N1) emission levels as a function of the Yb/Er ratio. Analytical results using Equation
S2 (colored solid lines) and Equation S3 (colored dashed lines). The numerically simulated result using Equation 1 in Sec. 3.3 (symbols). Black solid
lines are power laws corresponding to the fitting of the experimental data: exponent 0.6 for DCL and 1.4 for UCL.
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