Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Solution Processed High-Performance of p-Channel Copper-Tin-Sulphur Thin-Film Transistor

Narendra Naik Mude, Ravindra Naik Bukke, and Jin Jang*

Advanced Display Research Center, Department of Information Display, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea

Corresponding Author: Jin Jang

*Email: jjang@khu.ac.kr †

Figure S1. The optical photograph of (a) CTS precursor solutions and (b) thin-films using a different precursor solution concentration.

Figure S2. Schematic and optical properties of CTS TFT. (a) The schematic cross-sectional view of a bottomgate, bottom-contact (BGBC) CTS TFT. (b) Optical photograph of the fabricated CTS TFT, with channel width and length of 100 and 10 μ m, respectively. A clear active island can be seen.

Figure S3. Water contact angles of the CTS films with different concentration (M1 = 0.05 M, M2 = 0.075 M, M3 = 0.10 M, M4 = 0.125 M, and M5 = 0.15 M).

Figure S4. Optical properties of CTS thin films. (c) Transmittance and (d) optical bandgap. The bandgaps of CTS thin-films (M1, M3 and M5) are 2.65, 2.30, and 1.85 eV, respectively.

Figure S5. The XPS binding energy peaks for the (a) Cu2p, (b) Sn3d, and (c) S2p of CTS (M1, M3, and M5) films.

Figure S6. The electrical properties of p-type CTS TFTs. The transfer curves of CTS TFTs with different precursor solution concentrations of (a) M2=0.075 M and (b) M4=0.125 M. The $I_{DS}^{1/2}$ vs. V_{GS} , curves of CTS TFTs, respectively. The mobility was obtained from the linear part of the $(I_{DS})^{1/2}$ vs. V_{GS} curve. The transfer curves of the CTS TFTs were measured at drain voltage $(V_{DS}) = -(0.4, 0.7, and 1)$ V, by sweeping gate voltage (V_{GS}) from +2 to -5 V. All the TFTs have the channel length (L) and width (W) of 10 and 100 µm, respectively.

Figure S7. The output characteristics of the p-type CTS TFTs with different precursor solution concentrations. Output curves of all the CTS TFTs measured by applying V_{GS} from 0 to -5 V with a step of -1.2 V. All the TFTs have the channel length (L) and width (W) of 10 and 100 μ m, respectively.

Figure S8. The electrical properties of the p-type CTS TFT annealed at 200 and 300°C. (a) The transfer curve and $I_{DS}^{1/2}$ vs. V_{GS} curves of CTS TFT. (b) Output curves of the CTS TFT measured by applying V_{GS} from 0 to -5 V with a step of -1.2 V. (c) Transfer curve and $I_{DS}^{1/2}$ vs. V_{GS} curves and (d) output curves of the CTS TFT annealed at 300°C. The transfer curves of CTS TFTs were measured at drain voltage (V_{DS}) = -(0.4, 0.7, and 1.0) V, by sweeping gate voltage (V_{GS}) from +3 to -5 V.

Fig. S9. Transfer curves with hysteresis characteristics for (a) M1, (b) M3 and (c) M5 CTS TFTs. (d) The comparison of transfer curves of CTS TFT measured at Day-1, Day-2, and Day-3, where the TFT were aged in air.

Fig. S10 (a) Mobility I_{ON}/I_{OFF} of CTS TFT as a function of batches (Batch-1, Batch-2, and Batch-3). (b) Evaluation for the transfer curves of CTS TFT as a function of TFT position. Inset of (b) shows fabricated sample indicating different positions.

Table S1. The summary of the water contact angle data for the p-type CTS thin films with different precursor solution concentrations.

Molar Concentration (M)	C.A (deg.)	γw (mJm²)	γs (mJ/m²)	W (mJ/m²)
0.050	44.18	52.21	38.36	125.01
0.075	37.41	57.83	46.32	130.63
0.100	35.76	59.08	48.44	131.88
0.125	30.18	62.93	54.54	135.73
0.150	27.23	64.74	57.11	137.54

Table S2. Hall effect measurement data of p-type CTS thin films with different precursor solution concentrations.

Molar Concentration (M)	Resistivity (Ω/cm)	Mobility (cm²/Vs)	Conductivity (10 ⁻² S/cm)
0.050	0.85	4.02	0.77
0.075	0.75	5.05	1.22
0.100	0.61	9.81	4.30
0.125	0.55	5.10	3.02
0.150	0.41	3.57	2.21

Table S3. The summary of the electrical properties of p-type CTS TFTs with different precursor solution concentrations.

Concentration (M)	μ _{FE} (cm ² V ⁻¹ s ⁻¹)	V _{TH} (V)	SS (mV dec ⁻¹)	N _{it} (10 ¹² cm ⁻²)
0.050	0.24	-1.65	903	7.09
0.075	1.68	-1.25	855	6.69
0.100	2.43	-0.53	664	5.05
0.125	0.11	-0.71	911	7.16
0.150	0.07	-0.82	921	7.24

Table S4. The summary of the device performances of the p-type TFTs reported.

Method	Channel	Annealing temp. °C)	$\mu_{\rm FE}$ (cm ² V ⁻¹ s ⁻¹)	$I_{ m on}/I_{ m off}$	Year ^{ref}
Spin coating	SnO	450	0.13	85	20121
Spin coating	Cu ₂ O	700	0.16	~10 ²	2013 ²
Spray coating	Cu ₂ O	275	10-4-10-3	1×10-2	2013 ³
Spin coating	CuSCN	80	10-3-10-2	~104	20134
Spin coating	NiO	500	0.14		2014 ⁵
Spin coating	Cu2O	600	0.29	~104	20156
Spin coating	CuO	500	0.01	~10 ³	20167
Spin coating	NiO	250	0.07	~104	20168
Ink-jet printing	CuI	60	4.4	10-1-10-2	20169
Spin coating	CuO	250	0.32	~10 ⁴	201710
Spin coating	NiO	350	0.01	2	201711
Spin coating	CuO	500	2.83×10-3	~104	201812
Ink-jet printing	NiO	280	0.78	5.3×10 ⁴	201813
Spin coating	CuI	RT	0.44	10 ²	201814

REFERENCES

- (1) K. Okamura, B. Nasr, R. A. Brand, H. Hahn, J. Mater. Chem., 2012, 22, 4607.
- (2) S. Y. Kim, C. H. Ahn, J. H. Lee, Y. H. Kwon, S. Hwang, J. Y. Lee and H. K. Cho, *ACS Appl. Mater. Interfaces*, 2013, **5**, 2417.
- (3) P. Pattanasattayavong, S. Thomas, G. Adamopoulos, M. A. McLachlan, T. D. Anthopoulos, *Appl. Phys. Lett.*, 2013, **102**, 163505.
- (4) P. Pattanasattayavong, N. Y. Gross, K. Zhao, G. O.N. Ndjawa, J. Li, F. Yan, B. C.
- O'Regan, A. Amassian and T. D. Anthopoulos, Adv. Mater., 2013, 25, 1504.
- (5) S. Liu, R. Liu, Y. Chen, S. Ho, J. H. Kim and F. So, Chem. Mater., 2014, 26, 4528.
- (6) J. Yu, G. Liu, A. Liu, Y. Meng, B.Shin and F. Shan, J. Mater. Chem., C, 2015, 3, 9509.
- (7) J. Jang, S. Chung, H. Kang, V. Subramanian, Thin Solid Films, 2016, 600, 157.
- (8) A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins and F.Shan, *Appl. Phys. Lett.*, 2016, **108**, 233506.
- (9) C. H. Choi, J. Y. Gorecki, Z. Fang, M. Allen, S. Li, L. Yu Lin, C. C. Cheng and C. H. Chang J. Mater. Chem. C, 2016, 4, 10309.
- (10) A. Liu, S. Nie, G. Liu, H. Zhu, C. Zhu, B. Shin, E. Fortunato, R. Martins and F. Shan, J. Mater. Chem. C, 2017, 5, 2524.
- (11) Y. Li, C. Liu, G. Wang and Y. Pei, Semicond. Sci. Technol., 2017, 32, 085004.
- (12) T. S. Jung, H. Lee, S. P. Park, H. J. Kim, J. H. Lee, D. Kim and H. J. Kim, *ACS Appl. Mater. Interfaces*, 2018, **10**, 32337.
- (13) H. Hu, J. Zhu, M. Chen, T. Guo, F. Li, Appl. Phys. Lett., 2018, 441, 295.
- (14) A. Liu, H. Zhu, W. T. Park, S. J. Kang, Y. Xu, M. G. Kim and Y. Y. Noh, *Adv. Mater.*, 2018, **30**, 1802379.