Quantitative insights into the phase behaviour and miscibility of organic photovoltaic active layers from the perspective of neutron spectroscopy

Mohamed Zbiri, ${ }^{* a}$ Peter A. Finn, ${ }^{b}$ Christian B. Nielsen, ${ }^{b}$ and Anne A. Y. Guilbert ${ }^{* c}$

${ }^{a}$ Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble Cedex 9 38042, France. E-mail: zbiri@ill.fr
${ }^{b}$ Materials Research Institute and School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4 NS, United Kingdom
${ }^{c}$ Department of Physics and Centre for Plastic Electronics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom. E-mail: a.guilbert09@imperial.ac.uk.

Determination of the macroscopic scattering cross-section

Figure 1: (a) Mass-normalized QENS spectra of samples h-RRa-P3HT, h-RRa-P3HT:h-PCBM with $20 \mathrm{wt} \%$ and $75 \mathrm{wt} \% \mathrm{~h}$-PCBM and neat h-PCBM. (b) Integral of the QENS signals between -1 and 1 meV as a function of h -PCBM concentration for different Q values.

The macroscopic neutron cross-section Σ depends not only on the tabulated cross section for each atom composing the material but also on the density of the material. The density changes non-linearly with temperature, especially around the glass transition. The QENS spectra, presented in Figure 1a, are proportional to the structure factors multiply by the Q-independent total (coherent and incoherent) neutron scattering cross section of the samples. Thus, by fitting globally the Q- and concentration-dependent integral of the QENS spectra (Figure 1b) using Equation 1, we can evaluate both the macroscopic neutron cross-sections Σ and the densities of the materials (Table 1).

$$
\begin{align*}
\int_{-1 \mathrm{meV}}^{+1 \mathrm{meV}} S\left(\mathbf{Q}, E, c_{0}, T\right) & \propto \Sigma\left(c_{0}, T\right) \\
& \propto\left\{\left(1-c_{0}\right) \times d_{P 3 H T}(T) \times \frac{N_{A}}{M w^{P 3 H T}} \times \sigma_{P 3 H T}\right. \tag{1}\\
& \left.+c_{0} \times d_{P C B M}(T) \times \frac{N_{A}}{M w^{P C B M}} \times \sigma_{P C B M}\right\}
\end{align*}
$$

where c_{0} is the PCBM concentration in the sample, N_{A} is the Avogadro constant, $M w^{X}$ is the molecular weight of the monomer for P3HT and the whole molecule for PCBM, d_{X} is the density and σ_{X} is the neutron cross section. We choose the symmetric $[-1 ;+1] \mathrm{meV}$ energy window as the spread of the QENS spectra is well enough described within this range. We obtained reasonably accurate density values, as the density of polymers is usually around $1.1 \mathrm{~g} . \mathrm{cm}^{-3}$, and PCBM density is reported to be as high as $1.5 \mathrm{~g} . \mathrm{cm}^{-3}$. Furthermore, the chosen sample concentrations ensure that the QENS spectra are mainly incoherent and will be considered as such in the following.

Table 1: Monomer molecular weight $(M w)$ and neutron cross section (σ) are estimated from tabulated data, while density (d) and macroscopic neutron cross-sections (Σ) are extracted from fits of the QENS spectra using Equation 1.

	h-RRa-P3HT $(296 \mathrm{~K})$	d-RRa-P3HT $(360 \mathrm{~K})$	h-PCBM $(296 \mathrm{~K})$	h-PCBM $(360 \mathrm{~K})$
$M w^{X}\left(\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$	166.28	179.89	911.00	911.00
$\sigma_{X}(\mathrm{barn})$	1025	171	1556	1556
$d_{X}\left(\mathrm{~g} . \mathrm{cm}^{-3}\right)$	1.111	1.127	1.380	1.538
$\Sigma_{X}\left(\mathrm{~cm}^{-1}\right)$	4.826	0.645	1.423	1.585

Evaluating the phase composition of the blends

Figure 2: Concentration-dependent integrals (scatter points) of the Q-averaged QENS spectra on intervals of 0.1 meV as shown in (c) of h-RRa-P3HT:h-PCBM at 296 K (a) and d-RRa-P3HT:h-PCBM at 296 K (b). The lines are fits using logistic functions-based Equation 3 in the manuscript.

Comparison with blends of regio-regular P3HT and PCBM

Figure 3: Q-averaged QENS spectra of (a) neat h-RRa-P3HT, blends of h-RRa-P3HT:h-PCBM of 20 $\mathrm{wt} \%$ and $75 \mathrm{wt} \% \mathrm{~h}-\mathrm{PCBM}$ concentration and neat h-PCBM compared with neat h-RR-P3HT and the blend h-RR-P3HT:h-PCBM of $50 \mathrm{wt} \% \mathrm{~h}-\mathrm{PCBM}$ at $296 \mathrm{~K}^{1}$ and (b) neat d-RRa-P3HT, blends of d-RRa-P3HT:h-PCBM of $35 \mathrm{wt} \%$ and $50 \mathrm{wt} \% \mathrm{~h}-\mathrm{PCBM}$ concentration and neath-PCBM compared with the blend d-RR-P3HT:h-PCBM of $50 \mathrm{wt} \% \mathrm{~h}-\mathrm{PCBM}$ and neat d-RR-P3HT at $360 \mathrm{~K} .{ }^{1,2}$

References

1 A. A. Y. Guilbert, M. Zbiri, M. V. C. Jenart, C. B. Nielsen and J. Nelson, The Journal of Physical Chemistry Letters, 2016, 7, 2252-2257.

2 A. A. Guilbert, M. Zbiri, P. A. Finn, M. Jenart, P. Fouquet, V. Cristiglio, B. Frick, J. Nelson and C. B. Nielsen, Chemistry of Materials, 2019, 31, 9635-9651.

