Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Microwave-assisted foaming and sintering to prepare lightweight high-strength

polystyrene/carbon nanotubes composite foams with an ultralow percolation

threshold

Yeping Xie^{a#}, Zhao Li^{b#}, Jiahong Tang^a, Pan Li^a, Wenhua Chen^{c, d}, Pengju Liu^{a*}, Li

Li^a, Zhuo Zheng^a

^a State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute

of Sichuan University, Chengdu 610065, China

^b Department of Civil and Environmental Engineering, Villanova University,

Villanova, Pennsylvania 19085, United States

^c College of Architecture and Environment, Sichuan University, Chengdu, 610065,

China

^d National Engineering Research Centre for Flue Gas Desulfurization, Chengdu,

610065, China

*Email of corresponding author: <u>sculpj@163.com</u> (Pengju Liu)

[#]Yeping Xie and Zhao Li contributed equally to this work

Closely resemble to the 3D filler network, a power-law equation was used here to anticipate the relationship between electrical conductivity and EG loading¹.

$$\sigma = \sigma_0 (\varphi - \varphi_c)^t \quad (\varphi > \varphi_c) \tag{1}$$

where σ represents the conductivity, σ_0 is a constant reflects the intrinsic conductivity of CNTs, φ is the volume fraction of CNTs, φ_c is the percolation threshold, and *t* is a critical exponent revealing the dimensionality of the conductive networks. Find the logarithm of both sides of formula (1) with the natural logarithm as the base and fit in origin.

$$ln\sigma = ln\sigma_0 + tln(\varphi - \varphi_c) \quad (\varphi > \varphi_c) \tag{2}$$

The scattering parameters (S11 and S21) of samples were gathered to calculate the power coefficients absorption (A), reflection (R) and transmission (T) and EMI SE depending on the following equations:

$$R = |S_{11}|^2 \tag{3}$$

$$T = |S_{21}|^2 \tag{4}$$

$$A = 1 - R - T \tag{5}$$

$$SE_A = -10\log(T/(1-R)) \tag{6}$$

$$SE_R = -10\log^{(n)}(1-R) \tag{7}$$

$$EMISE = SE_A + SE_R + SE_M \tag{8}$$

where the EMI SE is the summation of the reflection shielding (SE_R), the absorption shielding (SE_A) and the multiple reflections shielding (SE_M), the SE_M can be neglected while the SE_{total} > 10 dB.²

Generally, δ represents the depth at which the intensity of the irradiation inside the materials decreases to 1/e of its original value at the surface, and it determines the SE_A with a fixed thickness (*d*) of the material. The absorption effectiveness and skin depth (frequency dependence) according to the classical electromagnetic theory are reported by these following equations¹:

$$SE_A = 20 \frac{d}{\delta} loge$$
 (9)

Where the d is 2 mm and the e is natural logarithm.

$$\delta = \frac{1}{\sqrt{\pi f \mu_0 \mu_r \sigma_S}} \tag{10}$$

where f and σ_s represent the frequency and AC electrical conductivity, respectively. μ_0 equals to $4\pi \times 10^{-7} H/m$, μ_r is the shield's relative magnetic permeability. For nonmagnetic materials, $\mu_r = 1_{.3}$

Filler content (wt%)	microwave power (W)	irradiation time (s)
0.04	800	60
0.06	700	60
0.08	600	60
0.1	500	60
0.15	400	60
0.2	300	60
0.3	300	50
0.4	300	40
0.5	300	30
0.75	300	25
1	300	20
1.5	300	12
2.0	300	8

 Table S1. The optimal microwave parameters for coated EPS/CNTs beads

Reference

- 1. D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang and Z. M. Li, *Adv. Funct. Mater.*, 2015, **25**, 559-566.
- 2. L. J. Xiaopeng Zhang, Gang Zhang, Dingxiang Yan, Zhongming Li, *Journal of Materials Chemistry C*, 2018, **6**, 10760-10766.
- 3. M. H. Al-Saleh, U. Sundararaj, *Carbon*, 2009, 47, 1738-1746.