Supporting information for

Greatly Enhanced Dielectric Charge Storage Capabilities of Layered Polymer Composites Incorporated with low loading fractions of

Ultrathin Amorphous Iron Phosphate Nanosheets

Meiyu Zhang^a, Zhicheng Shi^{a, *}, Jifu Zhang^a, Kun Zhang^b, Li Lei^a, Davoud Dastan^c, Bohua Dong^{a, *}

^aSchool of Materials Science and Engineering, Ocean University of China, Qingdao
²⁶⁶¹⁰⁰, P. R. China
^bKey Laboratory of Microgravity (National Microgravity Laboratory), Institute of
Mechanics, Chinese Academy of Sciences, Beijing 100190, China
^cDepartment of Materials Science and Engineering, Georgia Institute of Technology,
Atlanta, Georgia-30332, USA

*Corresponding author: E-mail: zcshi@ouc.edu.cn; dongbohua@ouc.edu.cn

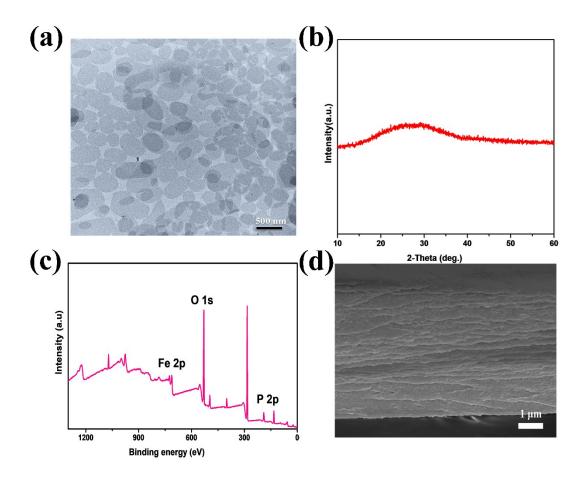


Fig. S1 (a) TEM images of amorphous FePO₄ nanosheets, (b) The wide-angle XRD pattern of amorphous FePO₄ nanosheets, (c) XPS spectrum of FePO₄ nanosheets showing the composition of both Fe, P and O, (d) Cross-sectional SEM morphology of PEI film.

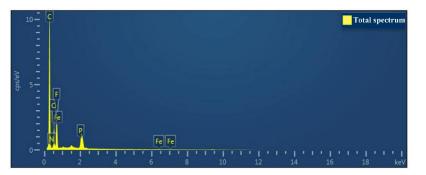


Fig. S2 Total spectrum

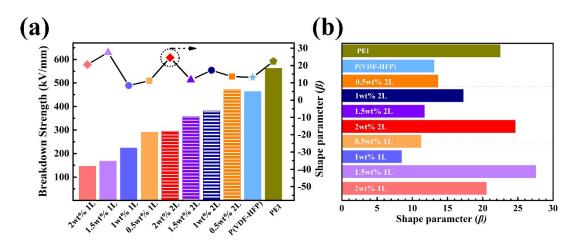
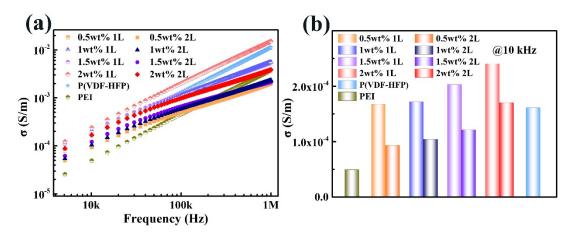
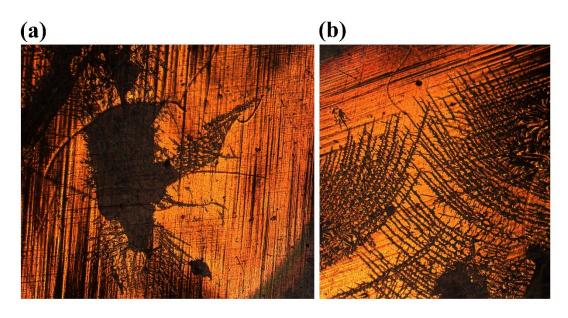
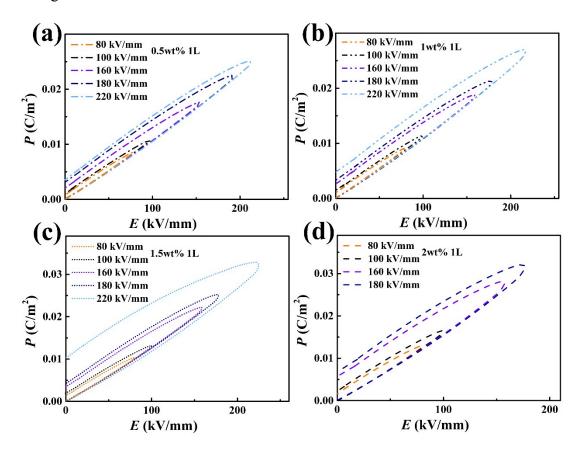
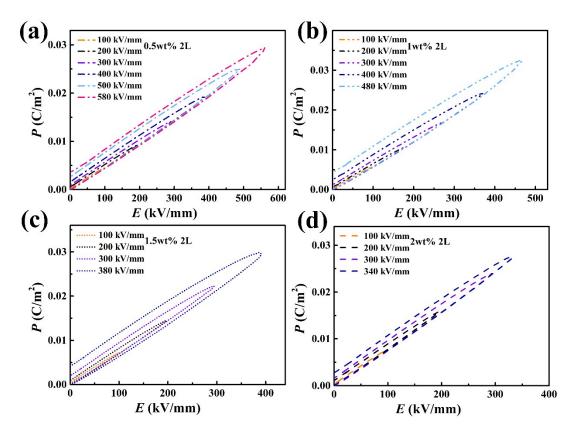
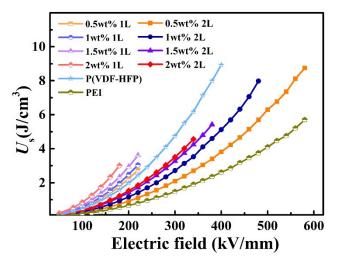


Fig. S3 (a) Comparison of the breakdown strength and shape parameters β of singlelayer and bilayer composites with different FePO₄ mass fractions, (b) Horizontal comparison of the shape parameters β of single-layer and bilayer composites with different FePO₄ mass fractions.


Fig. S4 (a) The frequency dependence of the electrical conductivity of single-layer and bilayer composites, (b) The electrical conductivity of single-layer and bilayer composites with different $FePO_4$ loading fractions.


Fig. S5 Observe electrical tree branches (a) on the surface of the sample after breakdown under a metallographic microscope, (b) The picture shows a partial enlargement of the electrical tree.

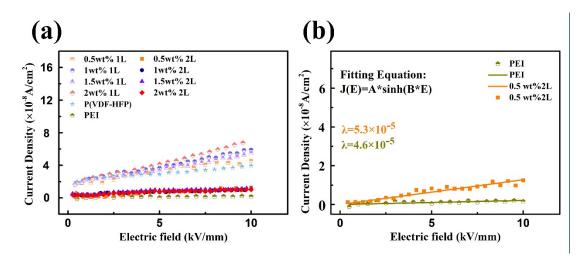

Fig. S6 *P-E* loops of FePO₄/P(VDF-HFP) single-layer films with different FePO₄ mass fraction ratios.

Fig. S7 *P-E* loops of FePO₄/P(VDF-HFP)-PEI bilayer films with different FePO₄ mass fraction ratios.

Fig. S8 The stored energy densities of the single layer and bilayer composites under varied external electric fields.

Fig. S9 (a)The variation of leakage current for 1L and 2L composite films with different filling fraction of FePO₄ nanosheets, (b) The leakage current density of PEI and 0.5 wt% 2L nanocomposite as a function of electric field at room temperature. The solid line represents the fit performed by the jump conduction equation.

The *J*-*E* curves are fitted using a hopping conduction model:^{S1, S2}

$$J(E,T) = 2ne\lambda v * \exp\left(-W_a/K_BT\right) * sinh(\lambda eE/2K_BT)$$
(S1)

where *J* is the leakage current, *n* is the carrier concentration, *e* is the charge of the carriers, λ is the hopping distance, *v* is the attempt-to-escape frequency, W_a is the activation energy, and K_B is the Boltzmann constant. At a fixed temperature, equation (S1) can be simplified as:

$$J(E) = A * sinhim(B * E)$$
(S2)

where A and B are two lumped parameters. The fitted results are shown in Fig. S9.

References

- S1 H. Li, D. Ai, L. L. Ren, B. Yao, Z. B. Han, Z. H. Shen, J. J. Wang, L. Q. Chen and Q. Wang, Adv. Mater., 2019, 31, 1900875.
- S2 L. L. Ren, H. Li, Z. L. Xie, D. Ai, Y. Zhou, Y. Liu, S. Y. Zhang, L. J. Yang, X. T. Zhao, Z. R. Peng, R. J. Liao and Q. Wang, Adv. Energy Mater., 2021, https://doi.org/10.1002/aenm.202101297.