Supplementary Information

A dual-response regenerable luminescent 2D-MOF for nitroaromatic sensing via target-modulation of active interaction sites

Farzaneh Afshariazar, Ali Morsali*

Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran

E-mail: Morsali_a@modares.ac.ir

Experimental section.

Materials and characterization techniques.

All chemical materials were commercially available and used as received. Infrared spectra were recorded using a Thermo Scientific Nicolet IR 100 FT-IR spectrometer. X-ray powder diffraction (XRD) measurements were done on a Philips X'pert diffractometer with monochromated Cu-K α radiation. Thermal curves were obtained on a PL-STA 1500 apparatus with the heating rate of 10°C /min up to 800 °C under a constant flow of nitrogen. SEM analysis was performed by TESCAN MIRA instrument. Sonochemical synthesis was carried out in a SONICA-2200 EP ultrasonic bath (frequency of 20 kHz). The luminescent properties were investigated by a fluorescence spectrometer (PerkinElmer LS45) with a slit width of 10 nm at ambient conditions.

		Table
		Structur
Crystal data		Structur
Chemical formula	C ₃₁ H ₂₇ N ₇ O ₆ Zn	al data
$M_{ m r}$	658.97	and
Crystal system	Monoclinic	refinem
Space group	$P2_{l}/c$	ent
Temperature [K]	298(2)	paramet
<i>a</i> [Å]	9.248(2)	ers for
<i>b</i> [Å]	26.079(6)	TMU-
<i>c</i> [Å]	12.051(3)	58 . ¹
α [°]	90.0	
β [°]	96.937(6)	
γ [°]	90.0	
V[Å] ³	2885.3(12)	
Z	4	
$\mu [\mathrm{mm}^{-1}]$	0.910	
Data collection		
T_{min}, T_{max}	0.8044, 0.8533	
No. of measured reflections	23321	
No. of independent reflections	5646	
No. of observed reflections $[I > 2\sigma(I)]$	4141	
R _{int}	0.0696	
θ range for cell measurement	2.31 to 24.08°	
Refinement		
$R[F^2 > 2\sigma(F^2)]$	0.0497	
$wR(F^2)$	0.1072	
S	1.043	
No. of reflections	5646	
No. of parameters	409	
No. of restraints	0	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.001, 0.000	
CCDC Number	1901306	

7n1 01	2.001(2)
Zill OI	2.001(2)
Zn1 N1	2.065(3)
Zn1 O4	2.172(3)
Zn1 O5	2.118(3)
Zn1 N6	2.085(3)
O1 Zn1 O4	152.8(1)
O1 Zn1 N1	100.2(1)
O1 Zn1 O5	105.1(1)
O4 Zn1 O5	60.9(1)
O4 Zn1 N6	91.0(1)
N1 Zn1 O1	109.1(3)

Table S2. Selected bond distances [Å], and angles [°] of TMU-58.¹

Figure S1- PXRD pattern of TMU-58.

Figure S2. Thermogravimetric analysis of TMU-58.

Figure S3. Predicted morphology of TMU-58 from BFDH analysis.

Figure S4. SEM images of **TMU-58** obtained by various concentration of acetic acid to H_2 oba ligand (r value) as capping agent. (a) r = 2, (b) r = 5, (c) r = 10, (d) r = 15.

Figure S5. IR spectrum of TMU-58, US-TMU-58, and M-TMU-58.

Figure S6. Representation of a 2D-layer of TMU-58 along the (020) reflection plane.

Figure S7. Stern-Volmer plots of a) TMU-58, b) US-TMU-58, c) M-TMU-58 for NB analyte.

Figure S8. Stern-Volmer plots of a) TMU-58, b) US-TMU-58, c) M-TMU-58 for TNP analyte.

Figure S9. IR spectrums of TMU-58 before and after sensing of NB and TNP analytes.

Figure S10. IR spectrums of US-TMU-58 before and after sensing of NB and TNP analytes.

Figure S11. IR spectrums of M-TMU-58 before and after sensing of NB and TNP analytes.

Figure S12. Spectral overlap between the absorption spectra of NB analyte and the emission spectrum of TMU-58, US-TMU-58, and M-TMU-58, respectively.

Figure S13. Spectral overlap between the absorption spectra of TNP analyte and the emission spectrum of TMU-58, US-TMU-58, and M-TMU-58, respectively.

Figure S14. Representation of the response selectivity of TMU-58 towards NB analyte in the presence of TNP.

Figure S15. Representation of the response selectivity of **US-TMU-58** towards **TNP** analyte in the presence of **NB**.

Figure S16. Representation of the response selectivity of **M-TMU-58** towards **TNP** analyte in the presence of **NB**.

Figure S17. The response selectivity of M-TMU-58 towards various analytes.

Figure S18. Chemical stability of TMU-58 after NB and TNP sensing.

Figure S19. Chemical stability of US-TMU-58 after NB and TNP sensing.

Figure S20. Chemical stability of M-TMU-58 after NB and TNP sensing.

Figure S21. PXRD patterns of recovered TMU-58, US-TMU-58, and M-TMU-58 after 3 cycles of sensing.

Reference

 F. Afshariazar and A. Morsali, Target-Architecture Engineering of a Novel Twodimensional Metal-Organic Framework for High Catalytic Performance, *Cryst. Growth Des.*, 2019, 19, 4239–4245.