Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supplemental Information for Ferromagnetic half-metallicity in YBaCo₂O₆ and spin-states driven metal-insulator transition

Wentao Hu,^a Ke Yang,^{b,a} Xuan Wen,^a and Hua Wu^{a,c,*}

^a Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics,

and Department of Physics, Fudan University, Shanghai 200433, China

^b College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China ^c Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

Table S1 Relative total energies ΔE (meV/f.u.) for different spin-states of YBaCo₂O₆ calculated by LSDA+U with different U values. The total magnetic moment per formula unit (μ_B /f.u.) is listed in the round brackets. Fixed-spin-moment (FSM) results in LSDA+U are also included.

	IS-Co ³⁺ /LS-Co ⁴⁺	IS-Co ³⁺ /IS-Co ⁴⁺	HS-Co ³⁺ /LS-Co ⁴⁺	HS-Co ³⁺ /IS-Co ⁴⁺
U = 6 eV	0 (3.00 µ _B)	→HS/LS	114 (5.00 µ _B)	596 (5.94 µ _B)
				770 (FSM, 7.00 μ_B)
U = 5 eV	0 (3.00 µ _B)	→HS/LS	190 (4.91 µ _B)	→IS/LS
				970 (FSM, 7.00 μ _B)
U = 4 eV	0 (3.00 µ _B)	→IS/LS	→IS/LS	→IS/LS
			$301 (FSM, 5.00 \mu_B)$	1138 (FSM, 7.00 μ _B)

Table S2 Relative energies ΔE (meV/f.u.) of the IS-LS and HS-LS states of YBaCo₂O₆ with different J_H.

volume expansion	spin-states	$J_{\rm H} = 1 {\rm eV}$	$J_{\rm H} = 0.8 {\rm eV}$	
-L 00/	IS-Co ³⁺ /LS-Co ⁴⁺	0	0	
+0%	HS-Co ³⁺ /LS-Co ⁴⁺	114	76	
1.40/	IS-Co ³⁺ /LS-Co ⁴⁺	47	85	
+4%	HS-Co ³⁺ /LS-Co ⁴⁺	0	0	

Table S3 Relative energies ΔE (meV/f.u.), local spin and orbital moments (μ_B /Co) of the IS-LS and HS-LS states of YBaCo₂O₆ calculated by LSDA+*U* and LSDA+*U*+SOC.

volume		LSDA+U		LSDA+U+SOC			
expansion	spin-states	ΔE	M_{spin}		ΔE	M_{spin}	Morb
+ 00/	IS-Co ³⁺ /LS-Co ⁴⁺	0	1.69/1.69		0	1.67/1.67	0.29/0.30
+0%	HS-Co ³⁺ /LS-Co ⁴⁺	114	2.80/1.70		114	2.72/1.67	0.16/0.36
1.40/	IS-Co ³⁺ /LS-Co ⁴⁺	47	1.78/1.78		48	1.75/1.75	0.33/0.33
T4%0	HS-Co ³⁺ /LS-Co ⁴⁺	0	2.90/1.51		0	2.86/1.49	0.18/0.28

Fig. S1 DOS of YBaCo₂O₆ in the LS-Co³⁺/LS-Co⁴⁺ state by LSDA+U. It is a paramagnetic insulator.

Fig. S2 DOS of YBaCo₂O₆ in the HS-Co³⁺/IS-Co⁴⁺ state by LSDA+*U* FSM calculation with $M_{tot} = 7.00 \mu_{B}/f.u.$ It is a FM half-metal.