Electronic Supporting Information

Attaining air stability in high performing n-type phthalocyanine based organic semiconductors

Nathan J. Yutronkie,¹ Benjamin King,² Owen A. Melville,² Benoit H. Lessard,^{2,3,*} and Jaclyn L. Brusso^{1,*}

¹Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada

²Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada

³School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, Ottawa, ON, K1N 6N5, Canada

Contents (10 pages)

Theoretical Calculations	S2
UV-Visible Spectroscopy	S3
Single-Crystal X-Ray Diffraction	S3
OTFT Testing and Electrical Characterization	S4
Thin-Film X-Ray Diffraction and Atomic Force Microscopy	S7

Theoretical Calculations.

As illustrated via DFT calculations to approximate the energies of the frontier molecular orbitals (FMOs) of H₂-SiPc juxtaposed to those of F₂-SiPc, axial fluorination has very little impact on the energetics (Figure S1). Incorporating 18 fluorine atoms, on the other hand, leads to a significant drop of the doubly degenerate LUMOs by nearly 1 eV, with an energy of -4.22 eV for the perfluorinated derivative F₂-F₁₆SiPc. Not only do these low-lying LUMOs suggest F₂-F₁₆SiPc₂ to be an air-stable n-type OSC, but these energies are in close range to the work function of polycrystalline Ag electrodes (i.e., -4.26 eV), thus enhanced performances can be expected as a result of the minimization of the electron injection barrier.

Figure S1. Energy level diagram of UB3LYP/6-311G(d,p) calculated HOMO and doubly degenerate LUMOs (as blue and green lines, respectively) from geometry optimized SiPc of D_{4h} symmetry (in eV). Dashed line corresponds to the LUMO energy threshold required for air stable electron transport performances in OSCs.

UV-Visible Spectroscopy.

Figure S2. UV-Vis absorption spectra for F_2 - F_{16} SiPc in solution (toluene) and as a thin film.

Single-Crystal X-Ray Diffraction.

Table S1. Crystallographic data for F_2 - $F_{16}SiPc$.

Parameters	F2-F16SiPc
Formula	$C_{32}F_{18}N_8Si$
Formula Weight	866.49
Crystal System	Tetragonal
Space Group	I4/m
a (Å)	14.8862(6)
b (Å)	14.8862(6)
<i>c</i> (Å)	6.2150(3)
α (°)	90
β (°)	90
γ (°)	90
V (Å3)	1377.24(13)
Z	2
$ ho_{ m calc}$ (g·cm ³)	2.089
Т(К)	203(2)
μ (mm ⁻¹)	0.256
2 <i>0</i> max (°)	27.541
Total Reflections	866
Unique Reflections	795
R ₁ , wR ₂ (on F ²)	0.0277, 0.0776

OTFT Testing and	l Electrical	Characterization &	z Thin-Film X	-ray Diffraction
------------------	--------------	--------------------	---------------	------------------

Material	Condition	Dielectric	$\mu_{e} [cm^2 \cdot V^{-1} \cdot s^{-1}]^a$	<i>V</i> _T [V] ^{<i>a</i>}	Ion [A] a	$I_{\rm on/off}{}^a$	$\mu_{\max} \left[cm^2 \cdot V^{-1} \cdot s^{-1} \right]$	n
F ₂ -F ₁₆ SiPc	N2	OTS-SiO ₂	$\textbf{0.15}\pm\textbf{0.036}$	1.6 ± 0.52	$9.34\times10^{\text{-5}}$	105-106	0.30	38
F ₂ -F ₁₆ SiPc	Air	OTS-SiO ₂	0.072 ± 0.028	11.4 ± 2.1	$3.76\times10^{\text{-5}}$	105	0.17	34
F ₁₆ CuPc	N 2	OTS-SiO ₂	0.039 ± 0.014	3.2 ± 3.2	1.23 x 10 ⁻⁵	104	0.063	31
F ₁₆ CuPc	Air	OTS-SiO ₂	0.035 ± 0.013	3.3 ± 3.2	1.12 x 10 ⁻⁵	105	0.061	31
F ₂ -F ₁₆ SiPc	N_2	SiO ₂	0.025 ± 0.0087	$\textbf{-3.7}\pm2.5$	1.67 × 10 ⁻⁵	105	0.059	34
F2-F16SiPc	Air	SiO ₂	$\begin{array}{c} 0.0084 \pm \\ 0.0042 \end{array}$	11.6 ± 2.0	3.24 × 10 ⁻⁶	10 ⁴ -10 ⁵	0.020	29
F ₁₆ CuPc	N 2	SiO ₂	0.012 ± 0.0085	-0.2 ± 2.6	3.63 x 10-6	10 ² -10 ³	0.045	27
F ₁₆ CuPc	Air	SiO ₂	0.010 ± 0.0085	-1.3 ± 2.7	2.9 x 10-6	10 ³ -10 ⁴	0.040	26

Table S2. Electrical performances of OTFTs^a using F₂-F₁₆SiPc and F₁₆CuPc as active layers characterized in N₂ and air.

a) Devices were fabricated using a BGTC architecture on Si/SiO₂ substrates with or without an OTS-modified dielectric layer and

Ag source-drain electrodes.

^{b)} $\mu_{\rm e}$ and $V_{\rm T}$ were calculated based on mean values, while $I_{\rm on}$ and $I_{\rm on/off}$ were calculated based on median values.

Figure S3. Representative (A) output and (B) transfer curves ($V_{DS} = 50$ V) for BGTC OTFTs fabricated with **F**₂-**F**₁₆**SiPc** characterized in an inert (N₂) atmosphere on OTS-modified SiO₂ (solid lines) and bare SiO₂ (dashed lines) as the dielectric

Figure S4. Representative (A) output and (B) transfer curves ($V_{DS} = 50$ V) for BGTC OTFTs fabricated with **F**₂-**F**₁₆**SiPc** characterized in air on OTS-modified SiO₂ (solid lines) and bare SiO₂ (dashed lines) as the dielectric

Figure S5. Representative (A) output and (B) transfer curves ($V_{DS} = 50$ V) for BGTC OTFTs fabricated with **F**₁₆**CuPc** on an OTS-modified substrate characterized in an inert (N₂) atmosphere (solid lines) and in air (dashed lines)

Figure S6. Representative (A) output and (B) transfer curves (V_{DS} = 50 V) for BGTC OTFTs fabricated with **F**₂-**F**₁₆**SiPc** (solid lines) and **F**₁₆**CuPc** (dashed lines) on an OTS-modified substrate characterized in an inert (N₂) atmosphere

Figure S7. Representative (A) output and (B) transfer curves (V_{DS} = 50 V) for BGTC OTFTs fabricated with **F**₂-**F**₁₆**SiPc** (solid lines) and **F**₁₆**CuPc** (dashed lines) on an OTS-modified substrate characterized in air

Table S3. Electrical performance of F_2 - F_{16} SiPc in BGBC device architectures with Au/ITO electrodes characterized in vacuum and air

Condition	Channel Length (µm)	$\mu_{e} x 10^{-3}$ [cm ² ·V ⁻¹ ·s ⁻¹]	V _T [V]	I _{on} [A]	l _{on/off}
Vacuum		$\textbf{5.3} \pm \textbf{1.2}$	2.1 ± 2.2	3.56 x10 ⁻⁶	10 ⁵
Air (t = 5 minutes)	20	$\textbf{3.7}\pm\textbf{0.41}$	5.4 ± 1.2	2.23 x10 ⁻⁶	10 ⁴
Air (t = 6 months)		0.64 ± 0.39	12.1 ± 1.9	3.54 x10 ⁻⁷	10 ⁴
Vacuum		$\textbf{6.3}\pm\textbf{2.4}$	-3.5 ± 2.7	9.28 x10 ⁻⁶	10 ⁵
Air (t = 5 minutes)	10	$\textbf{2.7} \pm \textbf{1.5}$	3.7 ± 0.43	3.72 x10 ⁻⁶	10 ⁴ -10 ⁵
Air (t = 6 months)		0.54 ± 0.38	9.1 ± 1.5	4.45 x10 ⁻⁷	10 ⁴ -10 ⁵
Vacuum		$\textbf{7.8}\pm\textbf{2.6}$	-2.3 ± 1.4	1.99 x10 ⁻⁵	10 ⁵⁻ 10 ⁶
Air (t = 5 minutes)	5	$\textbf{3.3}\pm\textbf{1.7}$	1.8 ± 2.7	1.05 x10 ⁻⁵	10 ⁴ -10 ⁵
Air (t = 6 months)		0.49 ± 0.44	4.6 ± 1.9	8.95 x10 ⁻⁷	10 ⁴ -10 ⁵
Vacuum		$\textbf{10.1}\pm\textbf{4.2}$	-4.7 ± 0.60	7.35 x10 ⁻⁵	10 ⁴ -10 ⁵
Air (t = 5 minutes)	2.5	$\textbf{4.9} \pm \textbf{0.81}$	0.19 ± 0.99	4.04 x10 ⁻⁵	10 ⁵
Air (t = 6 months)		0.54 ± 0.30	6.7 ± 0.74	2.81 x10 ⁻⁶	10 ⁴

Figure S8. Representative transfer curves (solid lines) and $\sqrt{I_{SD}}$ vs V_G (dashed lines) for stability study of **F**₂-**F**₁₆**SiPc** in a BGBC architecture (V_{DS} = 50V) where L = 20 µm.

Figure S9 PXRD traces of F_2 - F_{16} SiPc deposited on OTS and bare SiO₂ substrates with diffraction peak corresponding to the 110 plane of the single-crystal structure.

Figure S10. AFM image of F_2 - F_{16} SiPc deposited on a bare SiO₂ substrate

Figure S11. PXRD traces of $F_{16}CuPc$ deposited on OTS and bare SiO₂ substrates with diffraction plane corresponding to the single crystal identified.