Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information for:

Single crystal growth and properties investigation of Dy³⁺ and Tb³⁺ co-doped Gd₃Sc₂Al₃O₁₂ (GSAG): multi-applications for GaN blue LD pumped all-solid-state yellow lasers and UV or blue lights chip excited solid-state lightings

Shoujun Ding ^{a, b *}, Hao Ren^a, Yong Zou^a, Wenpeng Liu^b, Qingli Zhang ^{b,*}

^a School of Science and Engineering of Mathematics and Physics, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.

^b Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China

1. Effective segregation coefficient of Dy³⁺ (Fig.S1)

- 2. Judd-Ofelt (J-O) calculation
- 3. Fig.S2
- 4. Fig.S3

^{*} corresponding author e-mail: sjding@ahut.edu.cn (S.J. Ding)

1. Effective segregation coefficient of Dy³⁺

FIG.S1 (a) and (b) The morphology of the powder sample used to characterize the elements mapping; (c) The mapping of the elements in Dy,Tb:GSAG crystal.

2. Judd-Ofelt (J-O) calculation

The Judd-Ofelt (J-O) calculation is an effectively and widely used method to evaluating the 4f configuration radiative transitions of rare-earth ions in crystals or glasses[1-6]. In this work, the J-O calculation for Dy,Tb:GSAG crystal was conducted on the basis of the measured absorption spectrum in the range of 400~1700 nm (exclude the Tb³⁺ absorption). The detailed J-O calculation procedure is similar to that reported in our previous work. The square of the reduced matrix elements U^(t) used for the J-O

calculation has been described by Carnall et al [7]. The J-O parameters, including experimental line strength $s_{exp}(J^{"}J^{'})$ and calculated line strength $s_{cal}(J^{"}J^{'})$, were calculated and listed in Table S1. The relative square deviation R for the J-O calculation was fitted to be 9.77%, which indicates the high reliability of the calculated values. The intensity parameters Ω_t (t=2, 4, 6) were fitted to be 2.12×10^{-20} cm², 2.58×10^{-20} cm² and 2.46×10^{-20} cm², respectively. According to these calculated intensity parameters, the line strength of the electric-dipole transition S_{ed}, magnetic-dipole transition S_{md}, radiative transition rate $A(J^{"} \rightarrow J^{'})$, fluorescence branching ratio $\beta(J^{"} \rightarrow J^{'})$ and radiative lifetime τ_{rad} for the transitions of Dy³⁺ from its ⁴F_{9/2} level to different lower levels were calculated, as listed in Table S2.

Transitions from ⁶ H _{15/2}	$\lambda_{(nm)}$	$S_{exp} (10^{-20} \text{ cm}^2)$	$S_{cal} (10^{-20} \text{ cm}^2)$			
${}^{4}G_{11/2}$	428	0.0319	0.0382			
⁴ I _{15/2}	453	0.145	0.199			
${}^{4}F_{9/2}$	475	0.0378	0.0903			
⁶ F _{3/2}	751	0.115	0.150			
⁶ F _{5/2}	805	0.754	0.848			
⁶ F _{7/2}	901	1.73	2.03			
${}^{6}F_{9/2} + {}^{6}H_{7/2}$	1095	2.02	3.07			
${}^{6}F_{11/2} + {}^{6}H_{9/2}$	1280	3.27	4.83			
⁶ H _{11/2}	1690	2.30	1,77			
Relative square deviation: R=9.77%; Ω_2 =2.12, Ω_4 =2.58, Ω_6 =2.46						

Table S1 The calculated spectral parameters of Dy, Tb:GSAG crystal

 Table S2 The calculated fluorescence line strengths, branching ratios, radiative lifetimes,

 and transition rates of Dy,Tb:GSAG crystal

${}^{4}F_{9/2} \rightarrow {}^{2S+1}L_{J}$ transitions	$\lambda_{(nm)}$	$S_{ed} (10^{-20} \text{ cm}^2)$	$S_{md} (10^{-20} \text{ cm}^2)$	A (s ⁻¹)	β (%)	$ au_{rad} (ms)$
${}^{6}F_{1/2}$	1490	0.000119	0	0.01807	0.00142	0.784
${}^{6}F_{3/2}$	1375	0.000644	0	0.1245	0.00976	
${}^{6}F_{5/2}$	1239	0.0169	0	4.463	0.350	
⁶ F _{7/2}	1052	0.0101	0.0200	4.339	1.03	
⁶ H _{5/2}	941	0.00451	0	2.718	0.213	
⁶ F _{9/2}	873	0.00479	0.0120	3.621	1.01	
⁶ H _{7/2}	856	0.0237	0.00692	19.05	1.94	
${}^{6}F_{11/2}$	799	0.0138	0.0781	13.65	7.26	
⁶ H _{9/2}	762	0.0153	0.00449	17.34	1.77	
⁶ H _{11/2}	667	0.0331	0.0150	55.93	6.43	

Fig.S2 The room temperature photoluminescence spectra of Dy,Tb:GSAG crystal with the excitation of 450 nm and 355 nm, respectively.

Fig.S3 The absorption of Tb^{3+} at around 355 nm and 450 nm determined by measuring the spectra of $Tb_3Sc_2Al_3O_{12}$ (TSAG) crystal. The transmission spectrum (a) and excitation spectrum (monitoring at 545 nm) (b) of TSAG crystal

REFERENCES

- [1] B.R. Judd, Physical review 127 (1962) 750.
- [2] G. Ofelt, The journal of chemical physics 37 (1962) 511.
- [3] Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, Journal of Applied Physics 109 (2011) 053511.
- [4] B. Tian, B. Chen, Y. Tian, X. Li, J. Zhang, J. Sun, H. Zhong, L. Cheng, S. Fu, H. Zhong, Journal of Materials Chemistry C 1 (2013) 2338.
- [5] Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, R. Hua, Physical Chemistry Chemical Physics 20 (2018) 15876.
- [6] C. Yu, B. Chen, X. Zhang, X. Li, J. Zhang, S. Xu, H. Yu, J. Sun, Y. Cao, H. Xia, Physical Chemistry Chemical Physics 22 (2020) 7844.
- [7] W. Carnall, G. Goodman, K. Rajnak, R. Rana, The Journal of Chemical Physics 90 (1989) 3443.