Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

1

Supporting information

2 Superior actuation performance and healability achieved in a

3 transparent, highly stretchy dielectric elastomer film

- 4 Run-Pan Nie, ^{a, 1} Wen-Bin Tang, ^{a, 1} Chao Chen, ^a Hua-Dong Huang, ^a Yue
- 5 Li, a Kun Dai, b Jun Lei a and Zhong-Ming Li a
- ⁶ ^a College of Polymer Science and Engineering, State Key Laboratory of
- 7 Polymer Materials Engineering, Sichuan University, Chengdu, China
- 8 ^b Key Laboratory of Materials Processing and Mold (Zhengzhou
- 9 University), Ministry of Education, School of Materials Science and

10 Engineering, Zhengzhou University, Zhengzhou, China

- 11 E-mail: <u>leijun@scu.edu.cn</u>; <u>zmli@scu.edu.cn</u>
- ¹² ¹R.P. Nie and W. B. Tang contribute equally to this work.

13

Fig. S2 SEM image and corresponding EDS mappings of P(VDF-HFP)-15-DBP.

Fig. S3 Tensile tests of the polymer materials ranging from 0% to 50%.

2 Fig. S4 (a) tan δ and (b) AC current as a function of frequency for DBP/P(VDF-HFP) films.

3 Table S1. Comparison of electromechanical performance between the as-prepared elastomer of this

Sample	Er'	Y	β	E _b	Self-	Ref.
	(10 ³ Hz)	(MPa)	(MPa ⁻¹ , 10 ³ Hz)	(MV·m ⁻¹)	healing	
M3M-SBS	7.5	2.4	3.1	39.6	YES	[S1]
Thioacetic modified PDMS (B _{2%})	4.7	0.12	39.2	16.5	NO	[S2]
ec-SBAS (-2)	4.8	0.74	6.5	154	NO	[S3]
DOP/mTiO2/NR (50 phr)	4.0	0.49	25.5	40.0	NO	[S4]
EMIMTFSI-PDMS	3.7	1.0	3.7	-	NO	[S5]
Fe-Hpdca-PDMS	6.4	0.54	11.9	18.8	YES	[S6]
VHB 4910	4.7	0.23	20.4	17	NO	[S7]
DBP/P(VDF-HFP) (10 wt%)	10.9	0.9	11.7	48.2	YES	This work

4 work and the state-of-the-art DE composites.

- 5 Video S1 Actuated tests of P(VDF-HFP) under different electric fields (0, 20, 25 and 30 MV/m).
- 6 Video S2 Actuated tests of P(VDF-HFP)-10-DBP under different electric fields (0, 20, 25 and 30
- 7 MV/m).

8 References

- 9 S1 C. Ellingford, R. Zhang, A. M. Wemyss, Y. Zhang, O. B. Brown, H. Zhou, P. Keogh, C.
- 10 Bowen and C. Wan, ACS Appl. Mater. Interfaces, 2020, 12, 7595-7604.
- 11 S2 E. Perju, Y. S. Ko, S. J. Dünki and D. M. Opris, *Mater. Des.*, 2020, 186, 108319.
- 12 S3 C. Yang, X. Gao and Y. Luo, Chem. Eng. J., 2020, 382, 123037.
- 13 S4 Y. Ni, D. Yang, Q. Wei, L. Yu, J. Ai and L. Zhang, Compos. Sci. Technol., 2020, 195,
- 14 108202.
- 15 S5 Ankit, N. Tiwari, F. Ho, F. Krisnadi, M. R. Kulkarni, L. L. Nguyen, S. J. A. Koh and N.
- 16 Mathews, ACS Appl. Mater. Interfaces, 2020, **12**, 37561-37570.
- 17 S6 C. H. Li, C. Wang, C. Keplinger, J. L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F. Lissel, C.
- 18 Linder, X. Z. You and Z. Bao, *Nat. Chem.*, 2016, **8**, 618-624.

1 S7 R.K. Sahu, K. Patra, Mech. Adv. Mater. Struc., 2016, 23, 170-179.