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Experimental section

Materials

(1R)-(-)-Myrtenal and (S)-(-)-Perillaldehyde were purchased from Shanghai Macklin
Biochemical Technology Co., Ltd. (-)-Citronellal was purchased from Shanghai
Jiuding Chemical Technology Co., Ltd. (R)-(+)-Citronellal was purchased from
Aldrich Chemical Co., Inc. Other chemicals were purchased from HEOWNS
Biochemical Technology Co., LTD, China. All reagents were used without further
purification in this work. All water used in this work was deionized (DI) water.
Characterizations

'THNMR spectra, '3C NMR spectra and 2D ROSEY were obtained by BRUKER
AVANCE 1III HD 400. Temperature-variable '"HNMR spectra and ROESY spectra
were carried out by BRUKER AVANCE III 500. High-Resolution Mass Spectra (HR-
MS) were performed on an Agilent Q-TOF 6510. CD, temperature-variable CD and
CPL were measured with an Applied Photophysics ChirascanV100 model. Single
crystal data were collected on a Rigaku XtaLAB Synergy.

Computational details
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For all of different angles of Ala (0-360 ° and 72-108°) were constructed by Gaussian
view 06. Other compound structures were obtained from the single crystal structures.
All of ground-state geometry of Ala was optimized using hf/6-31g basic set. Notably,
in order to make sure certain angle between two CP rings, the atoms of ferrocene and
the carbon atoms of the carbonyl group directly connected to the CP ring were fixed
while other atoms were allowed to optimize without freeze. Base on the optimized
geometry, time-dependent density functional theory (TDDFT) with Becke's three-
parameter exchange Lee-Yang-Parr correlation functional (B3LYP) and 6-311g(d)
basis set were employed to calculate ECD using the Gaussian 16 program.

All of Ala conformations with different angles (0-360° and 72-108°) were
constructed by Gaussian view 06. Other structures were obtained from the single
crystal structures. All of the ground-state geometries of Ala were optimized using
b3lyp/6-311g(d) basic set. Notably, in order to determine certain angles between two
CP rings, the atoms of ferrocene and the carbon atoms of the carbonyl group directly
connected to the CP ring were fixed while other atoms were allowed to optimize
without freeze, and water was used a PCM solvation model. The convergence criteria
of optimization are as follows: Maximum Force 0.000015, RMS Force 0.000010,
Maximum Displacement 0.000060, RMS Displacement 0.000040. To ensure that the
optimized geometry was at a minimum, all geometry optimizations were followed by
a frequency calculation and only positive frequencies were obtained and hessian
matrix can be obtained. The thermodynamic data including electronic Energy (EE) +

Thermal Free Energy Correction was calculated at b3lyp/6-311g(d) level of theory.
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The optimization of Ala in water was carried out at b3lyp/6-311g(d) level.
Especially, A few water molecules positions were modified artificially for better
simulation after initial structure with 11 water molecules was given by Gromacs 2020
program. Then the calculations were performed with water PCM solvation model.
Synthesis of ferrocene diamino acids
The synthesis route was based on the following Scheme S1. 1,1'-
Ferrocenedicarboxylic Acid (600 mg) and L-alanine methyl ester hydrochloride (1500
mg) with HOBT (300 mg), DMAP (300 mg), EDC (1200 mg), TEA (1 mL) were
stirred in DMF (60 mL) at room temperature for 8 h. After the reaction completed,
poured the DMF solution into acidic water. Then crude product was extracted by
DCM by three times, and dried by anhydrous MgSO,. Next, crude product was
purified by silica gel column (DCM : MeOH 100:1). The final product was obtained
by hydrolysis reaction with LiOH (1.5g) in THF aqueous solution (1:1). Other
compounds were obtained by the same methods. 'H NMR, BC NMR and high-

resolution Mass spectra (HRMS) can be found in Fig. S1-S35.
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Scheme S1. Synthesis route of ferrocene diamino acid derivatives.

Synthesis of ferrocene-glycine hydrazine derivative (Scheme S2)
200 mg Gly methyl ester was dissolved in 20 ml dry methanol. Hydrazine hydrate (3

mL) was added and the mixture was stirred overnight. The product was obtained after
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the solvents were evaporated in vacuo.

[o] [o]
H
N/Y N N/W “NH2
H o H o

NH,NH, - H,0

MeOH

H\)‘L i1
N\)k NH2
0/ N~
H
o o]
1 2

Scheme S2. Synthesis route of ferrocene-glycine hydrazine derivative.
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Figure S1. 'TH NMR spectrum of Ala.
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Figure S2. 'TH NMR spectrum of Val.
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Figure S3. 'TH NMR spectrum of Leu.
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Figure S4. 'TH NMR spectrum of Ile.
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Figure S5. 'TH NMR spectrum of Pro.
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Figure S6. 'H NMR spectrum of Met.
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Figure S7. 'TH NMR spectrum of PGly.
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Figure S8. 'TH NMR spectrum of Tyr.

?

TSN

N 13 < <
12 11 10 9 8 7 6 5 4 3
Chemical shift (ppm)

W1 4. (

Figure S9. 'TH NMR spectrum of Asp.
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Figure S10. '"H NMR spectrum of Glu.
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Figure S11. '"H NMR spectrum of Man.
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Figure S12. '"H NMR spectrum of Ala-Py.
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Figure S13. '"H NMR spectrum of Man-Py.
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Figure S14. 3C NMR spectrum of Ala.
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Figure S15. 3C NMR spectrum of Val.
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Figure S16. a 13C NMR spectrum of Leu. b '3C NMR spectrum of Ile.
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Figure S17. 3C NMR spectrum of Pro.
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Figure S18. 13C NMR spectrum of Tyr.
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Figure S19. 13C NMR spectrum of PGly.
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Figure S21. BC NMR spectrum of Ala-Py.
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Figure S22. 13C NMR spectrum of Man-Py.
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Figure S23. HRMS spectrum of Ala.
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Figure S24. HRMS spectrum of Val.
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Figure S25. HRMS spectrum of Leu.
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Figure S26. HRMS spectrum of Ile.

S-17

503 503.5

504

504.5

505




Inteﬂsé 77H-1_GA1_01_1269.d: +MS, 0.2min #7
x10

469.1231

338.3549
208.1059 415.2020

l 791.5554
[0 N S .ll.‘.l.". L lLrlL N 1 L

t T —— T T T e La— T T T — T T —r T — T ¥

200 300 400 500 600 700 "800 miz

Figure S27. HRMS spectrum of Pro.
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Figure S28. HRMS spectrum of Met.
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Figure S29. HRMS spectrum of PGly.
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Figure S30. HRMS spectrum of Tyr.
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Figure S31. HRMS spectrum of Asp.
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Figure S32. HRMS spectrum of Glu.
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Figure S33. HRMS spectrum of Man.
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Figure S34. HRMS spectrum of Ala-Py.
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Figure S35. HRMS spectrum of Man-Py.
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Figure S36. CD spectra of different compounds in different solvents. Concentrations were
controlled as 3 mM. It is obvious that Ala, Val, Ile, Met, PGly, Asp and Glu show
similar response behaviors towards hydration, of which the mechanism has been
illustrated in the main text However, for Leu, Phe and Tyr, the Cotton effects show
barely decreasing tendency upon hydration. Apparently, compared to other
compounds, phenylalanine, leucine and tyrosine moieties of Phe, Leu and Tyr have
relative large hydrophobic domains, which shall hinder the hydration process. Man
and Pro, which cannot form Herrick’s conformation due to lack of amide groups,
possesses weak and abnormal response in water or other solvents, contributed by the

flexible substituent arms.
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Figure S37. Comparison between experimental and calculated CD spectra of different

compounds in different solvents.
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Figure S38. CD spectra and g, values in different solvents of Ala. [Ala] =1 mM; /=
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Figure S39. Water fraction-dependent CD spectra against DMF as well as the CD

values at 482 nm of Ala. [Ala] = 1 mM; /= 10 mm.
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Figure S43. The rotation of ferrocene monoalanine at different positions and the

corresponding calculated ECD spectra.
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Figure S44. The rotation of ferrocene dicarboxylic acid and the corresponding

calculated ECD spectra.
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Figure S45. CPL spectra of Man-Py in DMF (3 mM).
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Figure S46. a,b) CD spectra of Ala-Py and Man-Py with different water fractions

against DMF.
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Table S1 Crystal data of Val.

Deposition Number 2056201
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Formula

C22 H28 Fel N2 06

Temperature(K) 173.00(10)
Wavelength 1.54184A
Crystal system tetragonal
Space group P4,2,2
a,b,c/A a 11.8107(6) b 11.8107(6) ¢ 15.9318(10)
vV, A3 222237
Cell angles a 90.00  90.00 y 90.00
7,7 7:47"0
R-factor (%) 11.99
Table S1 Crystal data of Man.
Deposition Number 2056202

Formula C28 H22 Fel O8
Temperature(K) 173
Wavelength 1.54184A
Crystal system orthorhombic
Space group P2,2,2
a,b,c/A a 7.2076(2) b 20.5822(5) ¢ 21.2269(7)
V, A3 3148.97
Cell angles a 90 B90y90
7,7’ 7:47"0
R-factor (%) 3.54
Table S1 Crystal data of Ala-Py.
Deposition Number 2056203
Formula C52 H42 Fe N4 04,3(C4 H8 O)
Temperature(K) 173
Wavelength 1.54184A
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Crystal system monoclinic
Space group 12
a,b,c/A a 16.6972(2) b 10.48428(16) ¢ 30.9632(5)
V, A3 5336.54
Cell angles o 90 B 100.0890(14) y 90
7,7 7:47"0
R-factor (%) 4.38
Table S1 Crystal data of Ile.
Deposition Number 2056204

Formula C24 H32 Fel N2 O6
Temperature(K) 173
Wavelength 1.54184A
Crystal system tetragonal
Space group P4,2,2
a,b,c/A a12.1015(2) b 12.1015(2) ¢ 16.0220(5)
V, A3 2346.36
Cell angles a 90 B 90y 90
7,7 7:47"0
R-factor (%) 4.03
Table S1 Crystal data of Leu.
Deposition Number 2056205

Formula C24 H32 Fel N2 06,C4 H8 O1
Temperature(K) 173
Wavelength 1.54184A
Crystal system orthorhombic
Space group P212121
a,b,c/A a 11.20690(10) b 11.43430(10) ¢ 22.8029(3)
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V, A3 2922.03

Cell angles a 90.00 3 90.00 y 90.00
7,7’ 7:47"0
R-factor (%) 3.08
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