Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Synthesis of Colloidal MnAs_xSb_{1-x} Nanoparticles: Compositional Inhomogeneity and

Magnetic Consequences

Malsha A. Hettiarachchi,¹ Tepora Su'a,¹ Ehab Abdelhamid,² Shiva Pokhrel,² Boris Nadgorny,²

Stephanie L. Brock¹

¹Department of Chemistry, Wayne State University, Detroit, MI, 48202 USA

²Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA

Fig. S1: PXRD pattern of initial synthesis of MnAs_{0.5}Sb_{0.5} nanoparticles (target composition) using 1.1 mmol of Mn and heating the reaction mixture at 250 °C for 3 h (MnSb-PDF#-03-065-0388, Sb-PDF#-00-035-0732)

Fig. S2: PXRD patterns of the syntheses showing the effect of reaction time when heated at 250 °C in the presence of 1.1 mmol of Mn. (MnSb-PDF#-03-065-0388, Sb-PDF#-00-035-0732)

Fig. S3: PXRD patterns of the syntheses showing the effect of reaction temperature towards the MnAs_{0.5}Sb_{0.5} nanoparticles (target composition) synthesis in the presence of 1.1 mmol of Mn and heated for 3 h (MnSb-PDF#-03-065-0388, Sb-PDF#-00-035-0732)

Fig. S4: PXRD pattern of the synthesis in the presence of NaBH₄ showing the phase segregation in composition MnAs_{0.5}Sb_{0.5} nanoparticles (target composition) (MnSb-PDF#-03-065-0388, Sb-PDF#-00-035-0732, MnAs (hexagonal)- PDF#-00-028-0644, MnAs (orthorhombic)- PDF#-01-071-0923)

Fig. S5: (a) Elemental mapping analysis of nanoparticles of observed composition MnAs_{0.48}Sb_{0.52}. (targeted composition: MnAs_{0.70}Sb_{0.30}) **(b)** The line scan elemental analysis is obtained through a cluster of MnAs_{0.48}Sb_{0.52} nanoparticles along the black line (upper left, **Fig S5a**). Color code: Mn (red), As (blue), Sb (green), and O (yellow)

Table S1: Paramagnetic slopes subtracted from raw data to produce data in **Fig. 11** according to Equations S1-S4.

-	-	Slope at 50 K	Slope at 300 K
Target composition	Actual composition	χ _{para} (emu/mol Mn)	χ _{para} (emu/mol Mn)
MnAs _{0.1} Sb _{0.9}	MnAs _{0.03} Sb _{0.95}	0.04679	0.02344
MnAs _{0.2} Sb _{0.8}	MnAs _{0.08} Sb _{0.92}	0.06085	0.03226
MnAs _{0.3} Sb _{0.7}	MnAs _{0.12} Sb _{0.88}	0.03571	0.01060
MnAs _{0.5} Sb _{0.5}	MnAs _{0.31} Sb _{0.69}	0.06246	0.03187
MnAs _{0.7} Sb _{0.3}	MnAs _{0.52} Sb _{0.48}	0.04871	0.01797
MnAs _{0.8} Sb _{0.2}	MnAs _{0.48} Sb _{0.52}	0.03341	0.01322
MnAs _{0.9} Sb _{0.1}	MnAs _{0.85} Sb _{0.15}	0.09683	0.02952

Eq S1: $M_{total} = M_{para} + M_{ferro}$

Eq S3: y = mx + b; $m = \chi_{para}$

Eq S2: $M_{total} = \chi_{para}(H) + M_{ferro}$ Eq S4: $M_{ferro} = M_{total} - \chi_{para}(H)$