Supporting Information

MEA Surface Passivation of AgNWs:SnO₂ Composite Transparent Electrode Enables Efficient Flexible ITO-Free Polymer Solar Cells

He Liu,^{ab} Youzhan Li,^{ab} Jiang Wu, *ab Yingying Fu,^a Hao Tang,^{ab} Xueting Yi,^{ab} and

Zhiyuan Xie*ab

 ^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
^b School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.

Corresponding authors: r_wuj33@ciac.ac.cn (J. Wu); xiezy_n@ciac.ac.cn (Z. Y. Xie)

Figure S1. Solution-processed procedure of the transparent AgNWs:SnO₂ composite film with MEA surface modification via doctor-blade coating.

Figure S2. The survey XPS spectra of the AgNWs:SnO₂ composite and MEAmodified AgNWs:SnO₂ composite films.

Figure S3. (a) The EDS map scanning image and (b) corresponding elements analysis result for the AgNWs-SnO₂ composite film. (c) The EDS map scanning image and (d) corresponding elements analysis result for the MEA-modified AgNWs-SnO₂ composite film.

Figure S4. (a) Sheet resistance changes as a function of the number of peeling tests for the pure AgNWs and MEA-modified AgNWs:SnO₂ composite films. (b) Sheet resistance changes as a function of ultrasonication time in deionized water with 50W power for the pure AgNWs and MEA-modified AgNWs:SnO₂ composite films.

Figure S5. SEM images of (a) pure AgNWs film and (b) MEA-modified AgNWs: SnO₂ composite film after ultrasonication treatment. Optical images of (c) pure AgNWs film and (d) MEA-modified AgNWs: SnO₂ composite film after ultrasonication treatment.