Carbon-Quantum-Dot-Hybridized NiO_x Hole-Transport Layer Enables Efficient and Stable Planar p-i-n Perovskite Solar Cells with High Open-Circuit Voltage

Xuefeng Xia¹, Dan Zhang¹, Xiaofeng Wang¹, Zonghu Xiao², Fan Li^{*1} ¹Department of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China ²Jiangxi Key Laboratory of Advanced Materials and Applications for Solar Cells, Xinyu University, Xinyu 338004, China

Author Information

Corresponding Author

Fan Li, E-mail: <u>lfan@ncu.edu.cn</u>

Figure S1. TEM images of a) the pristine NiO_x and b) CQDs-hybridized NiO_x dispersed in deionized water.

Figure S2. (a) FE-SEM and AFM (inset) images, (b) Optical transmittance (Inset: the corresponding Tauc plot of each film) and (c) X-ray diffraction spectra of the C_0 -NiO_x, C_1 -NiO_x, C_3 -NiO_x and C_5 -NiO_x films prepared on quartz substrates.

Device configuration	V _{oc}	J_{sc}	FF	PCE	Method	HTL	Ref
	(V)	(mA					
		cm ⁻²)					
ITO/Cu:NiO _x /MAPbI ₃ /PC ₆₁ BM/bis-C ₆₀ /Ag	1.11	19.01	0.73	15.40	sol-gel	Cu:NiO _x	[1]
ITO/Cu:NiO _x / MAPbI ₃ /C ₆₀ /bis-C ₆₀ /Ag	1.05	20.53	0.72	15.52	combustion	Cu: NiO _x	[2]
ITO/Cu:NiO _x /MAPbI ₃ /C ₆₀ /BCP/Ag	1.12	22.28	0.81	20.26	NP ink	Cu: NiO _x	[3]
ITO/Cu:NiO _{x/} Cysteine/MAPbI ₃ /PCBM/Bphen/Al	1.11	23.60	0.70	18.30	combustion	Cu: NiO _x	[4]
FTO/Cu:NiO _x /MAPbI ₃ /PCBM /Ag	1.06	20.79	0.67	14.88	DCMS	Cu: NiO _x	[5]
ITO/Ag:NiO _x /MAPbI ₃ /PC ₇₁ BM/BCP /Ag	1.08	19.70	0.80	16.86	sol-gel	Ag: NiO _x	[6]
ITO/Co:NiO _x /MAPbI ₃ /PCBM/PEI/Ag	1.05	22.30	0.79	18.60	combustion	Co: NiO _x	[7]
FTO/Zn:NiOx/MAPbI3/PCBM/BCP/Ag	1.10	22.80	0.78	19.6	sol-gel	Zn: NiO _x	[8]
FTO/LiNiO/MAPbI3-xClx/PCBM/Ag	1.12	21.79	0.74	18.00	magnetron	Li: NiO _x	[9]
FTO/NiMgO _x /MAPbI3/PCBM/ZnMgO/Al	1.08	21.30	0.80	18.50	sol-gel	NiMgO	[10]
FTO/ Sr:NiO _x /MAPbI ₃ /PCBM/AgAl	1.11	22.73	0.79	20.05	sol-gel	Sr:NiO _x	[11]
TO/Cs:NiOx /MAPbI3/PCBM/ZrAcac/Ag	1.12	21.77	0.79	19.35	sol-gel	Cs: NiO _x	[12]
ITO/Li, Ag:NiO _x /MAPbI3/PCBM/BCP/Ag	1.13	21.29	0.80	19.24	sol-gel	Li,Ag: NiO _x	[13]
FTO/La:NiO _x /MAPbI3/PCBM/BCP/Ag	1.01	21.02	0.73	15.46	NP ink	La: NiO _x	[14]
ITO/Fe:NiO _x /MAPbI ₃ /PCBM/BCP/Ag	1.08	19.10	0.84	17.40	spray coating	Fe: NiO _x	[15]
FTO/NiO _x /MAPbI3/PCBM/Ag	1.03	17.42	0.71	12.70	sol-gel	NiO _x	[16]
ITO/NiO _x (F4-TCNQ)/MAPbI3/PCBM/BCP/Ag	1.02	20.70	0.74	15.70	sol-gel	F4-TCNQ:NiO _x	[17]
FTO/S:NiO _x /MAPbI ₃ /PCBM/PPDIN6/Ag	1.10	23.28	0.80	20.43	spray coating	S: NiO _x	[18]
FTO/NiO _x /MAPbI3/PCBM/Ag	1.01	18.30	0.81	14.95	EBPVD	NiO _x	[19]
FTO NiO _x /MAPbI ₃ /C ₆₀ /SnO ₂ NCs/Ag	1.12	21.8	0.77	18.80	sol-gel	NiO _x	[20]
ITO/NiO/MAPbI3/PCBM/PDINO/Ag	1.11	20.57	0.76	17.50	NP ink	NiO _x	[21]

Table S1. Performance of the reported inverted planar MAPbI₃ PSCs based on NiO_x HTLs

Reference:

[1] J.H. Kim, P.W. Liang, S.T. Williams, N. Cho, C.C. Chueh, M.S. Glaz, D.S. Ginger,

A.K. Jen, Adv. Mater. 27 (2015) 695-701.

[2] J.W. Jung, C.C. Chueh, A.K. Jen, A Low-Temperature, Solution-Processable, Adv. Mater. 27 (2015) 7874-7880. [3] W. Chen, Y. Wu, J. Fan, A.B. Djurišić, F. Liu, H.W. Tam, A. Ng, C. Surya, W.K. Chan, D. Wang, Adv. Energy Mater. 8 (2018) 1703519.

- [4] J. He, Y. Xiang, F. Zhang, J. Lian, R. Hu, P. Zeng, J. Song, J. Qu, Nano Energy 45 (2018) 471-479.
- [5] A. Huang, L. Lei, Y. Chen, Y. Yu, Y. Zhou, Y. Liu, S. Yang, S. Bao, R. Li, P. Jin, Sol. Energy Mater. Sol. Cells. 182 (2018) 128-135.
- [6] Y. Wei, K. Yao, X. Wang, Y. Jiang, X. Liu, N. Zhou, F. Li, Appl. Surf. Sci. 427 (2018) 782-790.
- [7] Y. Xie, K. Lu, J. Duan, Y. Jiang, L. Hu, T. Liu, Y. Zhou, B. Hu, ACS Appl. Mater. Interfaces 10 (2018) 14153-14159.
- [8] X. Wan, Y. Jiang, Z. Qiu, H. Zhang, X. Zhu, S. Iqbal, X. Liu, C. Xin, B. Cao, ACS Appl. Energy Mater. (2018) acsaem.8b00671-.
- [9] W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C.C. Stoumpos, B. Traore, M. Kepenekian,O. Durand, C. Katan, S. Tretiak, Adv. Mater. 30 (2018) 1703879.
- [10] G. Li, Y. Jiang, S. Deng, A. Tam, P. Xu, M. Wong, H.S. Kwok, Adv. Sci. (2017) 1700463.
- [11] J. Zhang, W. Mao, X. Hou, J. Duan, J. Zhou, S. Huang, W. Ou-Yang, X. Zhang,Z. Sun, X. Chen, Sol. Energy 174 (2018) 1133-1141.
- [12] W. Chen, F.Z. Liu, X.Y. Feng, A.B. Djurišić, W.K. Chan, Z.B. He, Adv. Energy Mater. 7 (2017) 1700722.
- [13] X. Xia, Y. Jiang, Q. Wan, X. Wang, L. Wang, F. Li, ACS Appl. Mater. Interfaces 10 (2018) 44501-44510.
- [14] S. Teo, Z. Guo, Z. Xu, C. Zhang, Y. Kamata, S. Hayase, T. Ma, ChemSusChem 12 (2019) 518-526.
- [15] P. Chandrasekhar, Y.-H. Seo, Y.-J. Noh, S.-I. Na, Appl. Surf. Sci. 481 (2019) 588-596.
- [16] Y. Qin, J. Song, Q. Qiu, Y. Liu, Y. Zhao, L. Zhu, Y. Qiang, J. Alloys Compounds 810 (2019) 151970.
- [17] S. Zhao, J. Zhuang, X. Liu, H. Zhang, R. Zheng, X. Peng, X. Gong, H. Guo, H. Wang, H. Li, Mater. Sci. Semicon. Proc. 121 (2021) 105458.

[18] C. Hu, Y. Bai, S. Xiao, K. Tao, W.K. Ng, K.S. Wong, S.H. Cheung, S.K. So, Q. Chen, S. Yang, Solar RRL 4 (2020) 2000270.

[19] M.I. Hossain, A.K.M. Hasan, W. Qarony, M. Shahiduzzaman, M.A. Islam, Y. Ishikawa, Y. Uraoka, N. Amin, D. Knipp, M. Akhtaruzzaman, Y.H. Tsang, Small Methods 4 (2020) 2000454.

[20] Z. Zhu, Y. Bai, X. Liu, C.C. Chueh, S. Yang, A.K.Y. Jen, Adv. Mater. 28 (2016)6478-6484.

[21] Y. Hou, W. Chen, D. Baran, T. Stubhan, N.A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C.O.R. Quiroz, Adv. Mater. 28 (2016) 5112-5120.

Figure S3. a) The electroluminescence spectra (EL) and b) EQE-current density curves for the best-performing C_0 -NiO_x and C_3 -NiO_x devices operating as LEDs (Insert: EL image of the C_3 -NiO_x device).

Figure S4. FT-IR spectra of the CQDs and CQDs-hybridized NiO_x films.

Figure S5. The cross-sectional SEM images of (a, b) thin perovskite films (casting from 0.12 M perovskite precursor solution) on C_0 -NiO_x and C_3 -NiO_x films, respectively, and (c, d) thick perovskite films (casting from 1.2 M perovskite precursor solution) on C_0 -NiO_x and C_3 -NiO_x films, respectively.

Concentrations	Complex	FWHM of (110)	Intensity ratio of	
	Samples	(degree)	(110) to (310)	
0.12 M	C ₀ -NiO _x	0.38	1.73	
	C ₃ -NiO _x	0.27	8.31	
1.20 M	C ₀ -NiO _x	0.17	3.78	
	C ₃ -NiO _x	0.12	4.76	

Table S2. XRD parameters of thin and thick perovskite films on C_0 -NiO_x and C_3 -NiO_x HTLs

Figure S6. UV-vis absorption spectra of thick MAPbI₃ films deposited on the C_0 -NiO_x and C₃-NiO_x films.

Figure S7. Steady-state PL spectra of MAPbI₃ perovskite films deposited on the glass, C_0 -NiO_x and C_3 -NiO_x films.