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General information:

All reagents were used as received from commercial sources unless otherwise stated.
Tetrahydrofuran and toluene were dried by sodium-potassium alloy. ! H NMR and !* C
NMR spectra were measured on a Bruker Advanced II (400 MHz) spectrometers or
MERCURY VX300. High-resolution mass spectra (HRMS) were measured on a LCQ-
Orbitrap Elite (Thermo-Fisher Scientific, Waltham, MA, USA) mass spectrometer.
Thermogravimetric analysis (TGA) was undertaken with a NETZSCH STA 449C
instrument. The thermal stability of the samples under a nitrogen atmosphere was
determined by measuring their weight loss while heating at a rate of 10 °C min -! from
25 to 600 °C. Cyclic voltammetry (CV) was carried out in nitrogen-purged
dichloromethane (DCM) at room temperature with a CHI voltammetric analyser.

Tetrabutylammonium hexafluorophosphate (TBAPF¢) (0.1 M) was used as the



supporting electrolyte. The conventional three-electrode configuration consists of a
platinum working electrode, a platinum wire auxiliary electrode, and an Ag wire
pseudo-reference electrode with ferrocenium—ferrocene (Fc*/Fc) as the internal
standard. Cyclic voltammograms were obtained at a scan rate of 100 mV s -'. Formal
potentials are calculated as the average of cyclic voltammetric anodic and cathodic

peaks.

Experimental section:

10-(4-(quinazolin-4-yl)phenyl)-10H-phenoxazine (2H-Qz): To a mixture of 10-(4-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-10H-phenoxazine (462 mg, 1.2
mmol), 4-chloroquinazoline (164 mg, I mmol), potassium carbonate (276 mg, 2 mmol)
and Pd(PPh;), (5 mg, 0.005 mmol) was added 20 mL of degassed tetrahydrofuran and
10 mL of degassed water. After stirring at 80 °C under a nitrogen atmosphere for 24 h,
the mixture was cooled down to room temperature and mixed thoroughly with 3 x 20
mL of dichloromethane. The collected organic phase was washed with water and dried
with anhydrous Na,SO,. After filtration and removal of the solvent, the residue was
purified by column chromatography on silica gel (eluent: petroleum /dichloromethane
= 2:1, v/v) to afford the title compound as bright yellow powder (251 mg, yield: 65%).
'"H NMR (400 MHz, CDCls-d, 298 K) 8 [ppm]: 9.44 (s, 1H), 8.23 (d, /= 7.9 Hz, 1H),
8.20 (d, /= 8.4 Hz, 1H). 8.05 (d, /= 8.3 Hz, 2H), 7.99 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H),
7.71 (ddd, J = 8.6, 7.0, 1.0 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 6.80-6.59 (m, 6H), 6.07
(d, J = 8.5 Hz, 2H). 3C NMR (100 MHz, CDCl;-d, 298 K) 6 [ppm]: 167.45, 154.50,

150.95, 144.24, 144.11, 137.18, 134.16, 133.87, 132.78, 131.32, 131.15, 128.22,
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126.82, 123.31, 123.00, 121.72, 115.72, 115.66. HRMS (m/z): calcd for CycH gN;O*

[M + HJ" 388.1444, found 388.1443.

XYP-1. HRMS (ESI) m/z calcd for C26H1sN3O+ (M+H)* 388.14444, found 388.14438.
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Fig. S1 HRMS (ESI) m/z calcd for Cy¢H;sN;O" (M+H)"™ 388.14444, found 388.14438.

10-(4-(2-chloroquinazolin-4-yl)phenyl)-10 H-phenoxazine (2C1-QZ): Prepared
according to the same procedure as 2H-QZ but using equimolar 2.4-
dichloroquinazoline. The residue was purified by column chromatography on silica gel
(eluent: dichloromethane = 1:1) to afford the product as yellow solid (236 mg, yield:
56%). 'H NMR (400 MHz, CDCl;-d + TMS, 298 K) & [ppm]: 8.22 (d, J=9.1 Hz, 1H),
8.10 (d, J= 8.5 Hz, 1H), 8.07-7.96 (m, 3H), 7.71 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.65-
7.53 (m, 2H), 6.82-6.48 (m, 6H), 6.07 (d, J= 1.5 Hz, 2H). 1*C NMR (100 MHz, CDCl;-
d, 298 K) 6 [ppm]: 170.50, 157.02, 153.16, 143.98, 141.59, 135.95, 135.18, 133.89,

132.91, 131.41, 128.36, 127.14, 123.31, 121.80, 121.46, 115.70, 113.38.



10-(4-(2-phenylquinazolin-4-yl)phenyl)-10H-phenoxazine (2Ph-QZ): To a mixture
of 2CI-QZ (406 mg, 1.0 mmol), 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (244
mg, 1.2 mmol), potassium carbonate (276 mg, 2 mmol) and Pd(PPh;), (10 mg, 0.01
mmol) was added 20 mL of degassed toluene, 10 mL of degassed ethanol and 10 mL
of degassed water. After stirring at 110 °C under an argon atmosphere for 24 h, the
mixture was cooled down to room temperature and extracted with 3 x 40 mL of
chloroform. The collected organic phase was washed with brine and dried with
anhydrous Na,SO,. After removal of the solvent, the residue was purified by column
chromatography on silica gel (eluent: petroleum/dichloromethane = 1:1, v/v) to afford
the product as a greenish-yellow powder (306 mg, yield: 66%). 'H NMR (400 MHz,
CDCls-d, 298 K) & [ppm]: 8.73 (dd, J= 8.0, 1.6 Hz, 2H), 8.22 (d, /= 7.8 Hz, 1H), 8.20
(d,J=7.8 Hz, 1H), 8.15 (d, /= 8.3 Hz, 2H), 7.95 (ddd, /= 8.3, 6.9, 1.2 Hz, 1H), 7.71-
7.50 (m, 6H), 6.80-6.59 (m, 6H), 6.12 (dd, J = 7.4, 1.9 Hz, 2H). '3C NMR (100 MHz,
CDCls-d, 298 K) & [ppm]: 167.53, 160.36, 152.29, 143.98, 140.71, 138.05, 137.76,
134.10, 133.85, 133.04, 131.09, 130.70, 129.42, 128.67, 127.35, 126.71, 123.34,
121.66, 121.52, 115.63, 113.44. HRMS (m/z): caled for C;HpN;O0° [M + HJ]F

464.1757, found 464.1760.



XYP-2. HRMS (ESI) m/z calcd for C32H2:N30* (M+H)* 464.17574, found 464.17599.
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Fig. S2 HRMS (ESI) m/z calcd for C3,H,,N307 (M+H)* 464.17574, found 464.17599.

10-(4-(2-(3,5-di(pyridin-2-yl)phenyl)quinazolin-4-yl)phenyl)-10 H-phenoxazine

(2DPyPh-Qz): Prepared according to the same procedure as 2Ph-QZ but using
equimolar 2,2'-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3-
phenylene)dipyridine. The residue was purified by column chromatography on silica
gel (eluent: dichloromethane) to afford the product as yellow solid (370 mg, yield:
60%). H NMR (400 MHz, CDCls-d, 298 K) 6 [ppm]: 9.40 (d, /= 1.7 Hz, 2H), 8.86 (t,
J=1.7Hz, 1H), 8.79 (ddd, J=4.8, 1.7, 0.8 Hz, 2H), 8.28 (d, /= 8.2 Hz, 1H), 8.23 (d,
J=28.4 Hz, 1H), 8.20-8.16 (m, 2H), 8.04 (d, J = 8.0 Hz, 2H), 7.96 (ddd, J = 8.4, 6.9,
1.3 Hz, 1H), 7.84 (td, J=7.7, 1.8 Hz, 2H), 7.71-7.59 (m, 3H), 7.38-7.26 (m, 2H), 6.83-
6.60 (m, 6H), 6.31-6.06 (m, 2H). 3C NMR (100 MHz, CDCl;-d, 298 K) & [ppm]:
167.32, 159.93, 157.25, 152.12, 149.76, 143.98, 140.69, 140.56, 139.26, 137.73,

136.83, 134.13, 133.87, 133.14, 131.14, 129.52, 128.01, 127.70, 127.46, 126.77,
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123.36, 122.42, 121.64, 121.11, 115.61, 113.49. HRMS (m/z): caled for C4,H,sN5sO*

[M + H]J" 618.2288, found: 618.22809.

XYP-3. HRMS (ESI) m/z calcd for Ca2H2eNsO* (M+H)* 618.22884, found 618.22894.
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Fig. S3 HRMS (ESI) m/z calcd for C4,H,3NsO" (M+H)* 618.22884, found 618.22894.
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Fig. S4 'TH NMR spectra of 2H-Qz (400 MHz, CD,Cl,-d, + TMS, 298 K).
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Fig. S5 3C NMR spectra of 2H-Qz (100 MHz, CDCls-d, 298 K).

00°0—

85’
90°9,
L0°91

_

79°91
£9°9
$9°91
9991
89'01
TL'91
L9
£L°97
L9
SL'9

9L

6L

79 78 77

8.0
ppm

8.1

== 96’1

e

L »86°1

- 660
L6'T

= 8670
0T

0.0

w;

1.0

w;

2.0

"]

3.0

w;

4.0
ppm

w;

w;

v
v

2C1-QZ-H

Fig. S6 'H NMR spectra of 2CI1-Qz (400 MHz, CD,Cl,-d> + TMS, 298 K)



:..E../

€0°LE
vm.hn\

8E°€11
O0L°STI
911
08°121
1€°€T1
PILTL
wmﬁ%
¥ 1€l
R.EV

68°€ET
wﬁ.mmﬁ\
S6°SE1
65°IPL
86°€PT
IT'EST—
WLST—

0S°0LT—

—

20 10

30

170 160 150 140 130 120 110 100 90 80 70 60
ppm

180

2C1-QZ-C

Fig. S7 13C NMR spectra of 2C1-Qz (100 MHz, CDCls-d, 298 K).
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Fig. S9 °C NMR spectra of 2Ph-Qz (100 MHz, CDCls-d, 298 K).
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Fig. S11 13C NMR spectra of 2DPyPh-Qz (100 MHz, CDCl;-d, 298 K).

Theoretical calculation:

Ground state structures and FMOs were obtained by B3LYP density functional method
with basis set def2-SVP. The dispersion correction was conducted by Grimme's D3
version with BJ damping function.!> 2 Time-dependent DFT with PBEO functional and
basis set def2-SVP were then performed to further analyse the excited states with the
optimized ground state structures. Based on the optimized Si state geometries and
vibrational normal modes, the nuclear ensemble approach was performed with the
Newton-X program.3 A total of 1000 nuclear configurations were sampled according to
the finite-temperature uncorrelated Wigner distribution for room temperature (300 K).
TDDFT calculations for S1 — So transitions were then performed at the same level to

collect the TDMs, oscillator strength, and transition energies of all the configurations.

10



Arithmetic mean of the f'and x, y and z components of TDM were then calculated to
describe the radiative transition in the dynamic disorder system.* The direction of the
calculated transition dipole moments (TDMs) and oscillator strengths (f's) were
extracted from the simulated S1 structures (Figure 4). S1 state geometries are optimized
at PBE(O/def-SVP level with Grimme's D3BJ empirical dispersion correction using
TDDFT method. The electronic structures are calculated using the GAUSSIANI16

program.

X-Ray Structural Analysis:

The single crystals of 2C1-Qz and 2Ph-Qz were achieved from solvent evaporation
method from chlorobenzene. Single-crystal X-ray-diffraction data were obtained from
a Bruker APEX2 Smart CCD diffractometer through using MoKa radiation (A =
0.71073 A) with a /26 scan mode at 296 K. Structures of the crystals were solved by
direct methods using the APEX2 software. None-hydrogen atoms were refined
anisotropically by full-matrix least-squares calculations on F? using APEX2, while the
hydrogen atoms were directly introduced at calculated position and refined in the
riding mode. Drawings were produced using Mercury-3.3. CCDC-2015641 (2CI-Qz)
and CCDC-2015649 (2Ph-Qz) contains supplementary crystallographic data. These
data can be obtained free of charge from the Cambridge Crystallographic Data Centre

via www.ccdc.cam.ac.uk/data_request/cif.

Photophysical Characterization
Synthesized compounds were subject to purification by temperature-gradient

11



sublimation in a high vacuum before use in subsequent studies. Thin films for
photophysical characterization were prepared by thermal evaporation on quartz
substrates at 1-2 A/sec in a vacuum chamber with a base pressure of < 10 torr.
Absorption spectra were characterized by a UV-vis-NIR spectrophotometer (UV-1650
PC or UV-2700, Shimadzu). Photoluminescence (PL) spectra, photoluminescence
quantum efficiencies (®prs), and phosphorescence spectra were characterized by a
spectrofluorimeter (FluoroMax-P, Horiba Jobin Yvon Inc. or F-4600, Hitachi
Inc.). ®ps of thin films or dilute solutions were determined using these
spectrofluorometers equipped with a calibrated integrating sphere. During the ®pp
measurements, the integrating sphere was purged with pure and dry nitrogen to keep
the environment inert. The selected monochromatic excitation light was used to excite
samples placed in the calibrated integrating sphere. By comparing the spectral
intensities of the monochromatic excitation light and the PL emission, the PL quantum
yields were determined. Phosphorescence spectra of thin films or dilute solutions were
conducted at 77 K (the liquid nitrogen temperature) by these spectrofluorometers
equipped with a microsecond flash lamp as the pulsed excitation source. A 10-ms delay
time was inserted between the pulsed excitation and the collection of the emission
spectrum. Time-resolved PL (PL decay curves) was measured by monitoring the decay
of the intensity at the PL peak wavelength using the time-correlated single-photon
counting fluorescence lifetime system, either FluoroCube of Horiba Jobin Yvon Inc.
having nanosecond pulsed light excitation from a 300-nm UV light-emitting diode as

the excitation source. The samples were placed in a vacuum cryostat chamber with the

12



temperature control.

Determination of the emitting dipole orientation of an emitting layer:

To determine emitting dipole orientation of an emitting film, angle-resolved and
polarization-resolved PL measurements were performed. The sample consisted of a
fused silica substrate with the 30-nm-thick film doped with emitters. The sample was
attached to a fused silica half-cylinder prism by index matching liquid. The excitation
of the samples was performed with the 325-nm line of the continuous-wave He:Cd laser
with a fixed excitation angle of 450. The emission angle was changed by use of an
automatic rotation stage. The spectra were resolved by utilization of a p-polarizing filter

and measured by a fiber optical spectrometer.

Analysis of rate constants

The rate constants were analyzed according to the literature method with the
assumption that kgjsc >> k; ttko1,° i.€. almost complete harvesting of triplet excitons
to singlets (thus ®g;sc~100%) as suggested by EQE analysis. Where kgisc, &1 and k.t
represent the rate constants of the RISC process, the radiative decay and non-radiative
decay from 77 to S states, respectively. The rate constant of radiative decay from S to
Sy states (k. s), the rate constant of non-radiative decay (k,s) and krjsc can be obtained:

kr's = q)pkp + q)dkd =~ chkp (Sl)

1-®
_ PLk (S2)

knr,S (D S
PL

k .k, ®
p’vd ¥ PL
lesczk— (S3)
S

13



~ k kP, (84

(85

Where k, and k4 represent the decay rate constants for prompt and delayed fluorescence,
respectively. They can be experimentally determined from prompt and delayed
fluorescence decay time constants (z, and 74) with a reciprocal relationship. @, and @y
represent quantum yields for the prompt and delayed fluorescence components. With
®,, Dy, 1, and 7; experimentally determined from typical ®p. and transient PL

characteristics, k., kurs, krisc and @jgc can be calculated by equations S1-S5.

Device fabrication and measurement

Except for the TADF emitters, the other organic materials used in experiments were
purchased from Lumtec, Inc. All compounds were subjected to temperature-gradient
sublimation under high vacuum before use. OLEDs were fabricated on the ITO-coated
glass substrates with multiple organic layers sandwiched between the transparent
bottom indium-tin-oxide (ITO) anode and the top metal cathode. All material layers
were deposited by vacuum evaporation in a vacuum chamber with a base pressure of
<10 torr. The deposition system permits the fabrication of the complete device
structure in a single vacuum pump-down without breaking vacuum. The deposition rate
of organic layers was kept at 0.1-0.2 nm/s. The doping was conducted by co-
evaporation from separate evaporation sources with different evaporation rates. The
active area of the device is 1 x 1 mm?, as defined by the shadow mask for cathode
deposition. The current-voltage-brightness (I-V-L) characterization of the light-

14



emitting devices was performed with a source-measurement unit (SMU) and a
spectroradiometer (DMS 201, AUTRONIC-MELCHERS GmbH). EL spectra of
devices were collected by a calibrated CCD spectrograph. The external quantum
efficiencies of devices were determined by collecting the total emission fluxes with a
calibrated integrating-sphere measurement system and by measuring the angular

distribution of the emission spectra and intensities.

Fig. S12 Single crystal structures of (a) 2CI-Qz and (b) 2Ph-Qz
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of 2H-Qz and 2Ph-Qz doped into mCPCN films with 3 wt.%.
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Fig. S17 (a),(b) Normalized fluorescence (300 K) and phosphorescence (77 K) spectra
(c),(d) Measured (symbols) p-polarized PL intensity (at PL peak wavelength) of
different emitting layers as a function of the emission angle (e),(f) Transient PL curves
of 2DPyPh-Qz doped into mCPCN films with 3 wt.% and 12 wt.%.
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Fig. S18 (a) Current density—voltage—luminance (/-V-L) characteristics, (b) current

efficiency, (c) external quantum efficiency and power efficiency, (d)

electroluminescence spectra for devices based on 2DPyPh-Qz with different doping

concentration.

Table S1. Summary of photophysical properties of different concentrations of 2H-Qz,
2Ph-Qz and 2DPyPh-Qz doped into the mCPCN host.
Compounds  Concentration  Apr /Appos’ [nm]  Si/T1/AEst [eV] 1/t [ns/us]  @pf[%]  O,/[%]

H-Q 3 wt.% 538/545 2.70/2.57/0.13 21.4/1.66 92 60
-Qz
6 wt.% 551.5/563 2.67/2.56/0.11 23.0/1.07 93 63
3 wt.% 540.5/561 2.66/2.51/0.15 18.6/0.40 91 66
2Ph-Qz
6 wt.% 541.5/558 2.72/2.50/0.22 20.5/0.41 91 66
3 wt.% 531.5/549 2.70/2.55/0.15 17.4/0.46 82 80
2DPyPh-Qz 6 wt.% 539.5/557 2.67/2.48/0.19 21.4/0.68 96 79
12 wt.% 550.5/566 2.65/2.50/0.15 21.7/0.60 91 76

¢ Fluorescence maximum wavelength at 300 K; ? Phosphorescence maximum
wavelength at 77 K; ¢ Calculated from the onset wavelengths of fluorescence (77 K)
and phosphorescence (77 K) spectra of three emitters in the mCPCN and energy gap
between lowest singlet and triplet states; ¢ Lifetime of the prompt component and
delayed component in transient PL; ¢ Photoluminescence quantum yield measured in
the mCPCN host under degassed condition at 300 K;/Horizontal dipole ratio measured
in doped films.

20



Table S2.The summary of EL characteristics of different concentrations of 2DPyPh-Qz
doped into the mCPCN host.

Concentration V[ V] ELpcax[nm] CIE (x,y) CE’[cd A™'] PE[lm W] EQE %]

3 wt.% 34 547 (0.40,0.56)  81.2,484,25.6  76.6,26.7,9.2 24.5,14.6,7.7
6 wt.% 2.8 555 (0.43,0.55)  89.9,72.7,474 96.5,54.2,23.6  27.5,22.3,14.5
12 wt.% 2.8 570 (0.46,0.52)  70.8,63.5,46.8 79.5,50.7,25.6  23.9,21.4,15.8

@ The turn-on voltage recorded at a brightness of 1 ¢d m2. Maximum value, values at
100 and 1000 cd m 2 of ® current efficiency; ¢ power efficiency; and ¢ external quantum
efficiency.
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