Supporting Information

Chloride-incorporated quasi-2D perovskite films via a dynamic processing for spectra-stable blue light-emitting diodes

Jing Chen,¹ Yan Jin,¹ Yan-Hui Lou,^{2, *}Shuai Yuan,¹ Yu-Huang Zhou,¹ Kai-Li Wang,¹ and Zhao-Kui Wang^{1,*}

 Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
 School of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, Jiangsu 215006, China

E-mail: yhlou@suda.edu.cn; zkwang@suda.edu.cn;

Contents

Figure S1. XPS spectra of N 1s of perovskite films with/without MACl treatment.

Figure S2. Full XPS spectra of perovskite films with/without MACl treatment.

Figure S3. Current efficiency-voltage characteristics of devices with/without MACl treatment.

Figure S4. Power efficiency-voltage characteristics of devices with/without MACl treatment.

Table S1. The lifetime constants fitted in triexponential function for TRPL decay measurement of

the CsPbBr3:PEABr films with/without MACl treatment.

Figure S1. XPS spectra of N 1s of perovskite films with/without MACl treatment.

Figure S2. Full XPS spectra of perovskite films with/without MACl treatment.

Figure S3. Current efficiency-voltage characteristics of devices with/without MACl treatment.

Figure S4. Power efficiency-voltage characteristics of devices with/without MACl treatment.

	<7> (ns)	$<\tau_1>(ns)$	$<\tau_2>$ (ns)	<73> (ns)
MACl Treatment	41.60	4.24	26.75	202.47
Reference	16.80	0.59	6.04	54.39

Table. S1: The lifetime constants fitted in triexponential function for TRPL decay

measurement of the CsPbBr₃:PEABr films with/without MACl treatment.