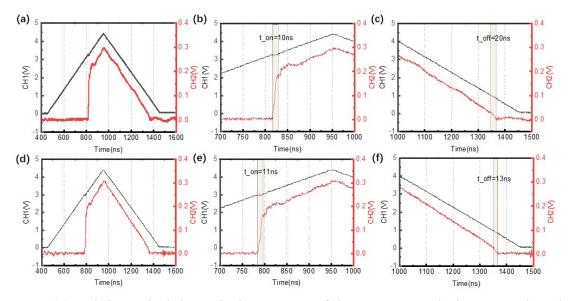
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Enhanced performance of Si-As-Se ovonic threshold switching selector

Zhenhui Yuan^{a,b}, Xiaodan Li^{a,b}, Sannian Song^{a,b*}, Zhitang Song ^{a,b*}, Jiawei Zha^c, Gang Han^c, Bingjun Yang^c, Takehito Jimbo^d, Koukou Suu^{c, d}


^aState Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^cULVAC Research Center Suzhou Co., Ltd, Suzhou 215026, China

^dULVAC, Inc., Kanagawa 253-8543, Japan

^{*} Electronic mail: songsannian@mail.sim.ac.cn, ztsong@mail.sim.ac.cn

Fig.1. (a) and(d) Typical dynamical responses of the $As_{43}Se_{57}$ and $Si_9As_{39}Se_{52}$ based device under triangular voltage pulse respectively. (b) and(c) are the magnification version of ON and OFF switching edges for $As_{43}Se_{57}$. (e) and(f) are the magnification version of ON and OFF switching edges for $Si_9As_{39}Se_{52}$.