Supporting Information (SI)

Utilization of double-sensitized structure toward achieving high performance green and red phosphorescent organic light-emitting diodes

Shuaibing Li ^{a,b}, Ruixia Wu ^a, Kai Chen ^a, Weidong Sun ^a, Zhenzhen Li ^a and Liang Zhou ^{a,b,*}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China

^b University of Science and Technology of China, Hefei 230027, People's Republic of China

Device	V _{turn-on}	\mathbf{B}^{a}	η _c ^b (EQE ^c)	η_p^{d}	$\eta_c^e(cd A^{-1})(EQE^f)$	CIE _{x, y} g
	(V)	(cd m ⁻²)	(cd A ⁻¹)	(lm W ⁻¹)	(1000 cdm ⁻²)	
6 wt%	2.5	45313	74.99 (23.1%)	78.49	51.64 (15.6%)	(0.267, 0.629)
8 wt%	2.7	43119	76.12 (23.8%)	75.36	44.04 (13.3%)	(0.271, 0.627)
10 wt%	2.6	55458	81.59 (25.1%)	87.94	58.52 (13.8%)	(0.278, 0.624)
12 wt%	2.7	58394	80.78 (24.7%)	84.33	70.01 (21.0%)	(0.281, 0.625)
14 wt%	2.6	59660	77.45 (23.6%)	86.86	69.79 (21.0%)	(0.286, 0.622)
16 wt%	2.6	66268	71.14 (21.5%)	75.50	67.31 (20.2%)	(0.290, 0.621)

Table S1. The key properties of green single-EML devices with $Ir(mppy)_3$ at different doping concentrations.

^a The data for maximum brightness (B), ^b maximum current efficiency (η_c), ^c maximum external quantum efficiency (EQE), ^d maximum power efficiency (η_p), ^e current efficiency (η_c) at the practical brightness of 1000 cd m⁻², ^f external quantum efficiency (EQE) at the practical brightness of 1000 cd m⁻², ^g Commission Internationale de l'Eclairage coordinates (CIE_{x, y}) at 10 mA cm⁻².

Figure S1 (a) EL efficiency-current density (η -*J*) characteristics of green single-EML devices with Ir(mppy)₃ at different doping concentrations. Inset: Current density-brightness-voltage (*J-B-V*) characteristics of green single-EML devices with Ir(mppy)₃ at different doping concentrations. **(b)** Normalized EL spectra of green single-EML devices with Ir(mppy)₃ at different doping concentrations operating at 10 mA cm⁻².

Device	V _{tum-on}	B ^a	$\eta_c{}^b(EQE{}^c)$	$\eta_p{}^d$	$\eta_c^{e}(cdA^{\text{-}1})(EQE^f)$	CIE _{x, y} ^g
	(V)	(cd m ⁻²)	(cd A ⁻¹)	(lm W-1)	$(1000 \text{ cd } \text{m}^{-2})$	
0.2 wt%	2.7	50626	74.64 (23.1%)	74.42	51.67 (15.5%)	(0.276, 0.626)
0.4wt%	2.6	73787	75.21 (22.9%)	74.69	55.38 (16.7%)	(0.269, 0.628)
0.6 wt%	2.7	60783	80.65 (24.7%)	76.49	51.55 (15.5%)	(0.275, 0.625)
0.8 wt%	2.5	57155	78.87 (23.8%)	79.82	54.41 (16.4%)	(0.272, 0.627)
1 wt%	2.7	49014	77.56 (24.1%)	70.92	53.43 (16.1%)	(0.271, 0.627)

Table S2. The key properties of green single-EML devices with FK306 at different co-doping concentrations in EML.

^a The data for maximum brightness (B), ^b maximum current efficiency (η_c), ^c maximum external quantum efficiency (EQE), ^d maximum power efficiency (η_p), ^e current efficiency (η_c) at the practical brightness of 1000 cd m⁻², ^f external quantum efficiency (EQE) at the practical brightness of 1000 cd m⁻², ^g Commission Internationale de l'Eclairage coordinates (CIE_{x, y}) at 10 mA cm⁻².

Fig. S2 (a) EL efficiency-current density (η -*J*) characteristics of green single-EML devices with FK306 at different co-doping concentrations in EML. Inset: Current density-brightness-voltage (*J*-*B*-*V*) characteristics of green single-EML devices with FK306 at different co-doping concentrations in EML. (b) Normalized EL spectra of green single-EML devices with FK306 at different co-doping concentrations in EML operating at 10 mA cm⁻².

Device	V _{tum-on}	Ba	$\eta_c^{b}(EQE^{c})$	$\eta_p{}^d$	$\eta_c^{e}(cdA^{\text{-}1})(EQE^f)$	$\text{CIE}_{x,y}^{g}$
	(V)	(cd m ⁻²)	(cd A ⁻¹)	(lm W-1)	$(1000 \text{ cd } \text{m}^{-2})$	
0.8 wt%	2.7	56351	76.90 (23.7%)	79.51	59.68 (18.0%)	(0.269, 0.628)
1 wt%	2.5	67862	78.29 (23.9%)	80.81	60.34 (18.2%)	(0.277, 0.624)
2 wt%	2.5	70215	86.67 (26.2%)	87.50	68.02 (20.5%)	(0.272, 0.628)
3 wt%	2.5	62850	79.65 (24.3%)	74.29	63.52 (19.1%)	(0.277, 0.624)
4 wt%	2.7	59753	76.44 (23.5%)	80.67	62.55 (18.9%)	(0.275, 0.625)
5 wt%	2.7	49652	74.65 (23.0%)	72.31	57.86(17.4%)	(0.268, 0.627)

Table S3. The key properties of green single-EML sensitized devices with FK306 at different doping concentrations in ETL.

^a The data for maximum brightness (B), ^b maximum current efficiency (η_c), ^c maximum external quantum efficiency (EQE), ^d maximum power efficiency (η_p), ^e current efficiency (η_c) at the practical brightness of 1000 cd m⁻², ^f external quantum efficiency (EQE) at the practical brightness of 1000 cd m⁻², ^g Commission Internationale de l'Eclairage coordinates (CIE_{x, y}) at 10 mA cm⁻².

Fig. S3 (a) EL efficiency-current density (η -*J*) characteristics of green single-EML sensitized devices with FK306 at different doping concentrations in ETL. Inset: Current density-brightness-voltage (*J-B-V*) characteristics of green single-EML sensitized devices with FK306 at different doping concentrations in ETL. (b) Normalized EL spectra of green single-EML sensitized devices with FK306 at different doping concentrations in ETL operating at 10 mA cm⁻².

Figure S4 Proposed energy levels diagram of the designed red OLEDs in this work and the molecular structure of $Ir(piq)_3$.

Fig. S5. Transient EL decay curves of device A and C.

