Electronic Supplementary Information

Design Optimization of CsPbBr₃ Nanocrystals into Zeolite Beta as Ultra-Stable

Green Emitters for Backlight Display Applications

Bohan Li^a, Yuchi Zhang^a, Yan Xu^{*a} and Zhiguo Xia^{*b}

^a Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China. Email: xuyan@mail.neu.edu.cn

^b School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China. Email: xiazg@scut.edu.cn

Figure captions

Fig. S1 a XRD patterns of zeolite Beta b SEM image of pure zeolite Beta.

Fig. S2 UV-Vis absorption spectra of CsPbBr₃-Beta at different calcination temperature when

the mass ratio of $(CsBr + PbBr_2)$: Zeolite Beta = 1:5.

Fig. S3 UV-Vis absorption spectra of CsPbBr₃–Beta at different mass ratio when calcined at 600 °C.

Fig. S4 Absorption (black line) and emission (green line) spectra of CsPbBr₃-Beta. Inset is its photograph under sunlight and UV illumination at 365 nm.

Fig. S5 a XPS spectrum of CsPbBr₃–Beta composite; **b** Cs 3d, Pb 4f, Br 3d, Si 2p, O 1s spectra of CsPbBr₃–Beta composite, respectively.

Fig. S6 Surface area and pore size of pristine beta and CsPbBr₃–Beta (CsBr + PbBr₂ : Zeolite Beta = 1: 5) calculated with BET/BJH method.

Fig. S1 a XRD patterns of zeolite Beta b SEM image of pure zeolite Beta.

Fig. S2 UV-Vis absorption spectra of $CsPbBr_3$ -Beta at different calcination temperature when the mass ratio of (CsBr + PbBr₂): Zeolite Beta = 1: 5.

Fig. S3 UV-Vis absorption spectra of CsPbBr₃–Beta at different mass ratio when calcined at 600 °C.

Fig. S4 Absorption (black line) and emission (green line) spectra of CsPbBr₃-Beta. Inset is its photograph under sunlight and UV illumination at 365 nm.

Fig. S5 a XPS spectrum of CsPbBr₃–Beta composite; **b** Cs 3d, Pb 4f, Br 3d, Si 2p, O 1s spectra of CsPbBr₃–Beta composite, respectively.

Fig. S6 Surface area and pore size of pristine beta and $CsPbBr_3$ -Beta ($CsBr + PbBr_2$: Zeolite Beta =1:5) calculated with BET/BJH method.