Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.

Synergistic Promotion of Photoelectrochemical Water Splitting Efficiency of TiO₂ Nanorod Arrays by Doping and Surface Modification

Zhao Liang¹, Ding Chen^{1*}, Shang Xu¹, Zhi Fang², Lin Wang², Weiyou Yang² and Huilin Hou^{2*}

^a State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,

College of Mechanical and Vehicle Engineering, Hunan University, Changsha

City,410082, P.R. China

^b Institute of Materials, Ningbo University of Technology, Ningbo City, 315211, P.R.

China

^{*} Corresponding authors. E-mails: chending@hnu.edu.cn (D. Chen) and houhuilin86@163.com (H. Hou)

Tel: +86-574-87080966, Fax: +86-574-87081221.

[†] Electronic supplementary information (ESI) available.

Fig. S1 XRD patterns of N-TiO₂ nanorods and Au/N-TiO₂ nanorods by magnetron sputtering of Au with different time (60 s, 90 s, 120 s).

Fig. S2 (a) The cross-sectional SEM images of the pristine TiO₂. (b~d) SEM images of the pristine TiO₂ under different magnification (e~f) Representative TEM and HRTEM images of the pristine TiO₂.

Fig. S3 (a) The cross-sectional SEM images N-TiO₂. (b~d) SEM images of N-TiO₂ under different magnification.

Fig. S4 Morphological and elemental characterizations of as-prepared Au/N-TiO₂ nanoarrays. Typical SEM image (a) and EDX spectrum of Au/N-TiO₂ (b).

Element	Weight %	Atom %
0	53.7	77.9
Ti	43.61	21.14
Au	1.78	0.21
Si	0.91	0.75
Ν	0	0

Table S1. Chemical compositions of Au/N-TiO₂ nanoarrays

Fig. S5 The UV-Vis spectra of pristine TiO₂ nanorods and N-TiO₂ nanorods calcined in ammonia with different time (30 min, 1 hour and 2 hours).

Fig. S6 The UV-Vis spectra of N-TiO₂ nanorods and N-TiO₂ nanorods modified with Au nanoparticle by magnetron sputtering with different time (60 s, 90 s, 120 s).

Fig. S7 The dark scans of pristine TiO₂, N-TiO₂, Au-TiO₂ and Au-N-TiO₂

photoanodes.

Fig. S8 The linear sweep voltammetry curves of pristine TiO_2 and TiO_2 nanorarrays treated by ammonification with different times of 30 minutes, 1 hour and 2 hours under simulated sunlight.

Synthesis approach	Electrolyte	Photocurrent density (at 1.23V vs. RHE)	Reference
Hydrogen plasma-treated 1D/3D TiO ₂ nanorod arrays	0.5 M H ₂ SO ₄	0.369 mA/cm ²	1
TiO_2 nanowire arrays via cotreatment with H_2 and NH_3	1 М КОН	0.454 mA/cm ²	2
Fe-doped TiO ₂ nanorod arrays	1M NaOH	~0.7 mA/cm ²	3
Si-doped TiO ₂ nanorod arrays heated in air and in vacuum	0.1M NaOH	0.83 mA/cm ²	4
TiO ₂ nanorod array annealed in argon	1M NaOH	0.978 mA/cm ²	5
Au nanoparticles decorated TiO ₂ nanorod arrays	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	~1 mA/cm ²	6
1.8 μm long TiO ₂ nanowires arrays coated by ALD TiO ₂	1M NaOH ~1.08 mA/cm ²		7
Flower-like branched TiO ₂ nanorod arrays	1.0 M KOH	~1.1 mA/cm ²	8
TiO ₂ Nanorod @ Nanobowl arrays	1M NaOH	1.24 mA/cm ²	9
C doped TiO ₂ nanowire arrays	1M NaOH	1.3 mA/cm ²	10
IrO ₂ -hemin-TiO ₂ nanowire arrays	phosphate buffer saline	1.4 mA/cm ²	11
TiO ₂ -SrTiO ₃ core-shell nanowire arrays	1 M NaOH	1.43 mA/cm ²	12
Post-annealed N-TiO ₂ nanowire arrays	1M NaOH	~1.5 mA/cm ²	13
Etching and W doping of TiO ₂ nanowire arrays	1 М КОН	1.53 mA/cm ²	14
TiO ₂ @g-C ₃ N ₄ @CoPi nanorod arrays	0.1 M Na ₂ SO ₄	1.6 mA/cm ²	15
MoS ₂ nanosheets coated on TiO ₂ nanorod arrays	0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	1.7 mA/cm ²	16
TiO ₂ nanorod array modified by Au NPs and graphene quantum dots	1M NaOH	1.75 mA/cm ²	17
1T-Phase MoS ₂ nanosheets on TiO ₂ nanorod arrays	0.5 M Na ₂ SO ₄	~1.8 mA/cm ²	18
CoO _x nanoparticles modified TiO ₂ nanowire arrays	0.1 M KOH	2.09 mA/cm ²	19
Hydrogen-treated TiO ₂ nanowire array	1 M NaOH	2.5 mA/cm ²	20
Au nanoparticles modified branched TiO2 nanorod arrays	0.5 M Na ₂ SO ₄	2.5 mA/cm ²	21

Table S2. Representive summary of the recent reports on TiO_2 -based photoanodes for
PEC (Since 2009)

TiO ₂ nanowire/ gold or silver film	1 M NaOH	2.6 mA/cm ²	22
Hydrogenated TiO ₂ /ZnO heterojunction nanorod arrays	•0.5 M Na ₂ SO ₄	2.7 mA/cm ²	23
Au/N-TiO ₂ nanowire arrays	1 М КОН	2.8 mA/cm ²	This study

Table S3. Fitted results of the EIS curves in Fig. 5c.

Sample	TiO ₂	N-TiO ₂	Au-TiO ₂	Au/N-TiO ₂
$R_{S}(\Omega)$	49.6	24.5	20.46	13.52
$R_{trap}(\Omega)$	1530.2	1078	1267	309.8
$R_{ct}(\Omega)$	3546	2413	1112	919.6

References

- 1 V. Madhavi, P. Kondaiah, M. Ghosh and G. M. Rao, *Ceram. Int.*, 2020, **46**, 17791-17799.
- 2 S. Hoang, S. P. Berglund, N. T. Hahn, A. J. Bard and C. B. Mullins, J. Am. Chem. Soc., 2012, 134, 3659-3662.
- 3 W. Chakhari, J. Ben Naceur, S. Ben Taieb, I. Ben Assaker and R. Chtourou, *J. Alloy. Compd.*, 2017, **708**, 862-870.
- 4 C. Chen, Y. Wei, G. Yuan, Q. Liu, R. Lu, X. Huang, Y. Cao and P. Zhu, Adv. Funct.

Mater., 2017, 27, 1701575 (1-9).

- 5 H. Huang, X. Hou, J. Xiao, L. Zhao, Q. Huang, H. Chen and Y. Li, *Catal. Today*, 2019, **330**, 189-194.
- 6 F. Xu, D. Bai, J. Mei, D. Wu, Z. Gao, K. Jiang and B. Liu, J. Alloy. Compd., 2016, 688, 914-920.
- 7 Y. J. Hwang, C. Hahn, B. Liu and P. Yang, ACS Nano, 2012, 6, 5060-5069.
- 8 J. Liu, X. Yu, Q. Liu, R. Liu, X. Shang, S. Zhang, W. Li, W. Zheng, G. Zhang, H. Cao and Z. Gu, *Appl. Catal. B-Environ.*, 2014, **158-159**, 296-300.
- 9 B. Liu and E. S. Aydil, J. Am. Chem. Soc., 2009, 131, 3985-3990.
- 10 C. Cheng and Y. Sun, Appl. Surf. Sci., 2012, 263, 273-276.
- 11 J. Tang, B. Kong, Y. Wang, M. Xu, Y. Wang, H. Wu and G. Zheng, *Nano Lett.*, 2013, **13**, 5350-5354.
- 12 F. Wu, Y. Yu, H. Yang, L. N. German, Z. Li, J. Chen, W. Yang, L. Huang, W. Shi and L. Wang, *Adv. Mater.*, 2017, **29**, 1701432 (1-7).
- 13 G. Wang, X. Xiao, W. Li, Z. Lin, Z. Zhao, C. Chen, C. Wang, Y. Li, X. Huang, L. Miao, C. Jiang, Y. Huang and X. Duan, *Nano Lett.*, 2015, **15**, 4692-4698.
- 14 Y. Wang, Y. Y. Zhang, J. Tang, H. Wu, M. Xu, Z. Peng, X. G. Gong and G. Zheng, ACS Nano, 2013, 7, 9375-9383.
- 15 Y. Li, R. Wang, H. Li, X. Wei, J. Feng, K. Liu, Y. Dang and A. Zhou, J. Phys. Chem.

C, 2015, **119**, 20283-20292.

16 Y. Liu, Y. Li, F. Peng, Y. Lin, S. Yang, S. Zhang, H. Wang, Y. Cao and H. Yu, Appl.

Catal. B-Environ., 2019, 241, 236-245.

17 A. Subramanian, Z. Pan, H. Li, L. Zhou, W. Li, Y. Qiu, Y. Xu, Y. Hou, C. Muzi and

Y. Zhang, Appl. Surf. Sci., 2017, 420, 631-637.

- 18 Y. Pi, Z. Li, D. Xu, J. Liu, Y. Li, F. Zhang, G. Zhang, W. Peng and X. Fan, ACS Sustain. Chem. Eng., 2017,5, 5175-5182.
- 19 J. Yuan, C. Li, T. Li, M. Jing, W. Yuan and C. M. Li, Sol. Energ. Mat. Sol. C., 2020, 207, 110349 (1-10).
- 20 G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Zhang

and Y. Li, Nano Lett., 2011, 11, 3026-3033.

- 21 F. Xu, J. Mei, M. Zheng, D. Bai, D. Wu, Z. Gao and K. Jiang, J. Alloy. Compd., 2017, 693, 1124-1132.
- 22 M. Liu, N. de Leon Snapp and H. Park, Chem. Sci., 2011, 2, 80-87.
- 23 W. Feng, L. Lin, H. Li, B. Chi, J. Pu and J. Li, *Int. J. Hydrogen Energ.*, 2017, **42**, 3938-3946.