## **Electronic Supplementary Information**

## The effect of shell modification in iron oxide nanoparticles on electrical conductivity in polythiophene-based nanocomposite

Roma Wirecka, <sup>\*a,b</sup> Mateusz M. Marzec, <sup>b</sup> Marianna Marciszko-Wiąckowska, <sup>b</sup> Maria Lis, <sup>b</sup> Marta Gajewska, <sup>b</sup> Elżbieta Trynkiewicz, <sup>b</sup> Dorota Lachowicz, <sup>b</sup> Andrzej Beransik<sup>a,b</sup>

<sup>a</sup> AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, A. Mickiewicza Av. 30, 30-059 Cracow, Poland. E-mail: roma.wirecka@fis.agh.edu.pl

<sup>b</sup> AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, A. Mickiewicza Av. 30, 30-059 Cracow, Poland.



Figure 1. M-H loops for powder samples of P3HT, SPION(P3HT) and SPION(Sq) in three different temperatures, namely: (a, b) 80 K, (c, d) 290 K, (e, f) 440 K



Figure 2. XPS spectra of C 1s region acquired for (a) SPION(Sq) and (b) SPION(P3HT)



Figure 3. XPS derived changes of atomic concentration in SPION(Sq) and SPION(P3HT) samples during Ar-GCIB sputtering