Supporting Information

The role of Cr³⁺ and Cr⁴⁺ in emission brightness enhancement and

sensitivity improvements of NIR-emitting Nd³⁺/Er³⁺ ratiometric

luminescence thermometers

W. Piotrowski¹, L. Dalipi², R. Szukiewicz³, B. Fond², M. Dramicanin⁴, L.

Marciniak1*

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw,

Poland

² Institute of Fluid Dynamics and Thermodynamics, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany

³ Institute of Experimental Physics, Faculty of Physics and Astronomy, University of Wroclaw, Wroclaw 50-

204, Poland

⁴Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Belgrade 11001, Serbia.

* corresponding author: https://www.ukanow.corresponding-authors.pl

KEYWORDS luminescent thermometry, triple-doped nanocrystals, sensitization by transition metals, host-

sensitizer-emitter systems, lanthanide ions

The integral intensities of the Nd^{3+} and Er^{3+} bands to calculate LIR values were fitted with Mott-Seitz equation (Eq. S1):

$$I = \frac{I_0}{C \cdot \exp(-\frac{W}{k \cdot T}) + 1}$$
 (Eq. S1)

where: I – the intensity in temperature T, I_0 – the intensity in the initial temperature, W - the activation energy, k – Boltzmann constant, C – the dimensionless constant

The average lifetime of the excited states were calculated with the equation Eq. S2:

$$\langle \tau \rangle = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
 (Eq. S2a)

where: τ_1 , τ_2 – the average time, which is in accordance with the relation $\tau = t \cdot ln(2)$ and A_1 , A_2 – amplitude, which are the parameters of the doubleexponential function:

$$y = y_0 + A_1 \cdot \exp(-\frac{x}{t_1}) + A_2 \cdot \exp(-\frac{x}{t_2})$$
 (Eq. S2b)

Temperature determination uncertainty was calculated using Eq. S6:

$$\delta T = \frac{1}{S_R} \cdot \frac{\delta LIR}{LIR}$$
(Eq. S3a)

 S_R is the relative sensitivity and $\delta LIR/LIR$ determines the uncertainty of the LIR determination, where $\delta LIR/LIR$ was determined as follows:

$$\frac{\delta LIR}{LIR} = \sqrt{\left(\frac{\delta I_{Tb}}{I_{Tb}}\right)^2 + \left(\frac{\delta I_{Eu}}{I_{Eu}}\right)^2}$$
(Eq. S3b)

Table S1. The Rietveld refinement parameters of XRD patterns for YAG:Nd³⁺, Er³⁺, Cr^{3+/4+} powders

Sample	Rexp	Rprofile	weigth R	D	weight S-
			profile	statisctics	Statistics
YAG:1%Nd ³⁺ , 1%Er ³⁺	1.52919	1.96616	3.1929	1.33710	1.07269
YAG:1%Nd ³⁺ , 1%Er ³⁺ ,	1.55303	3.36102	4.73781	0.40631	0.25277
$1\% Cr^{3+}$					
YAG:1%Nd ³⁺ , 1%Er ³⁺ ,	1.53677	2.51937	3.52202	0.70730	0.49693
2%Cr ³⁺					
YAG:1%Nd ³⁺ , 1%Er ³⁺ ,	1.52759	2.66131	3.75056	0.57502	0.39426
5%Cr ³⁺					
YAG:1%Nd ³⁺ , 1%Er ³⁺ ,	1.55828	1.66312	2.39261	0.81267	0.73250
10%Cr ³⁺					

Figure S1. The representative SEM images of YAG:Nd³⁺, Er^{3+} – scale bar: 4 µm (a), 5 µm (b), 20 µm (c) and YAG:Nd³⁺, Er^{3+} , 10% $Cr^{3+/4+}$ – scale bar: 10 µm (d), 5 µm (e), 3 µm (f).

YAG:1%Nd ³⁺ , 1%Er ³⁺ ,	1.56894	1.82007	2.74488	0.78064	0.69035
20%Cr ³⁺					

	YAG:1% Nd ³⁺ , 1%Er ³⁺ ,					
	Cr ^{3+/4+} -unco-doped			doped with 10% $Cr^{3+/4+}$		
Element	at% (%)	+/-	r_{conc} (%)	at% (%)	+/-	r_{conc} (%)
Y	13.630	0.166		14.097	0.284	
Nd	0.180	0.022	1.321	0.187	0.045	1.324
Er	0.163	0.012	1.198	0.180	0.008	1.277
Al	25.877	0.337		24.773	0.198	
Cr	-	-		1.947	0.123	7.858
Ο	60.147	0.373		58.817	0.358	

Table S2. Atomic concentration of the surface of the analysed samples by EDS method.

at% - atomic percentage

 r_{conc} – the ratio of the dopant concentration in respect to the content of the element which it substitutes (Nd, Er substitutes Y sites, Cr substitutes Al sites)

Figure S2. The representative EDS spectra for YAG:Nd³⁺, Er³⁺ (a) and YAG:Nd³⁺, Er³⁺, 10% Cr^{3+/4+} (b).

	samples (%):				
Element	x = 1%	x = 5%	x = 10%	x = 20%	
Al	11.74	12.97	10.4	7.25	
Y	6.73	8.21	6.9	4.6	
С	40.25	32.23	43.28	50	
0	36.58	42.24	35.07	34.1	
Ν	4.54	4.17	3.96	3.48	
Cr	0	0.17	0.39	0.56	

The concentration of elements for the YAG:1% Nd³⁺, 1% Er³⁺, x% Cr^{3+/4+}

Table S3. Atomic concentration from the analyzed samples by XPS method.

Figure S3. The emission spectra of YAG:1% $\rm Nd^{3+},$ 1% $\rm Er^{3+},$ 5% $\rm Cr^{3+/4+}$ at 123 K and at 273K .

Figure S4. The influence of $Cr^{3+/4+}$ ions concentration on excitation spectra in YAG:1% Nd³⁺, 1% Er³⁺, x% $Cr^{3+/4+}$ for 1064 nm (a) and on the contribution parameter δ (b), for 1530 nm (c) and for 445 nm (d).

Figure S5. The thermal evolution of the NIR range of emission spectra of YAG:1% Nd³⁺, 1% Er³⁺, x% Cr^{3+/4+} powders with $\lambda_{exc} = 445$ nm, where x = 1 (a), 2 (b), 5 (c), 10 (d), 20 (e).

Figure S6. The thermal evolution of emission spectra of YAG:1% Nd³⁺, 1% Er³⁺, x% Cr^{3+/4+} powders with $\lambda_{exc} = 793$ nm, where x = 0 (a), 1 (b), 2 (c), 5 (d), 10 (e), 20 (f).

Figure S7. The thermal evolution of integral band intensities of ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition of Nd³⁺ ion (a) and ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ electronic transition of Er³⁺ ion (b) excited by $\lambda_{exc} = 793$ nm.

Figure S8. Thermal dependence of LIR calculated on the unnormalized data for different Cr3+/Cr4+ dopant concentration

Figure S9. The thermal evolution of luminescent decays in YAG:1% Nd³⁺, 1% Er³⁺, x% Cr^{3+/4+} for 1064 nm (Nd³⁺ excited state), where x = 0 (a), 1 (b), 2 (c), 5 (d), 10 (e), 20 (f).

Figure S10. The thermal evolution of average lifetime of Nd³⁺ excited state for YAG:1% Nd³⁺, 1% Er³⁺, x% Cr^{3+/4+} powders.

Figure S11. The thermal evolution of luminescent decays in YAG:1% Nd³⁺, 1% Er³⁺, x% Cr^{3+/4+} for 1530 nm (Er³⁺ excited state), where x = 0 (a), 1 (b), 2 (c), 5 (d), 10 (e), 20 (f).

Figure S12. The thermal evolution of average lifetime of Er³⁺ excited state for YAG:1% Nd³⁺, 1% Er³⁺, x% Cr^{3+/4+} powders.

Figure S13. The thermal dependence of temperature estimation uncertainty for different $Cr^{3+/4+}$ concentration in the YAG:1% Nd³⁺, 1% Er³⁺, x% Cr^{3+/4+}.

Figure S14. The thermal evolution of luminescent decays in YAG:1% Nd³⁺, 1% Er³⁺, x% Cr^{3+/4+} for 445 nm (Cr³⁺ excited state), where x = 1 (a), 2 (b), 5 (c), 10 (d), 20 (e).

Figure S15. The thermal evolution of average lifetime of Cr³⁺ excited state for YAG:1% Nd³⁺, 1% Er³⁺, x% Cr^{3+/4+} powders.