Synthesis, phase purification and magnetic characterization of the $(Cr_{1-x}Mn_x)_2AIC MAX$ -phase

Kirill Sobolev,*a Hanna Pazniak,**b Michael Farle,^{b,c} Valeria Rodionova,a Ulf Wiedwald***b

^aImmanuel Kant Baltic Federal University, 236041, Kaliningrad, Russian Federation.

^bFaculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany.

^cKirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation.

E-mails: *kirill_sobolev-off@mail.ru; **hanna.pazniak@uni-due.de; ***ulf.wiedwald@uni-due.de

SUPPLEMENTARY INFORMATION

Table S1. EDX analysis results for the phases found on SEM images in Figure 1: $(Cr_{1-x}Mn_x)_2AIC$, Cr_5AI_8 , Mn_3AIC . The standard deviation to each value, obtained via gathering point-by-point statistics, is given in brackets. The instrumental error is not included.

The detected phase	Average measured atomic content, at.%						
	Cr	Mn	Al	C			
<i>x</i> = 0							
Cr ₂ AIC	49.53 (0.84)	-	24.26 (0.35)	26.2 (0.59)			
Al ₈ Cr ₅	35.92 (-)	-	64.08 (-)	-			
<i>x</i> = 0.05							
(Cr _{0.947} Mn _{0.053}) ₂ AIC	47.13 (0.46)	2.66 (0.42)	23.45 (0.05)	26.6 (0.38)			
Al ₈ (Cr,Mn)₅	18.36 (1.77)	25.6 (1.24)	56.04 (0.72)	-			
x = 0.12							
(Cr _{0.878} Mn _{0.122}) ₂ AIC	43.98 (0.78)	6.14 (0.67)	23.68 (0.08)	26.18 (0.16)			
Al ₈ (Cr,Mn) ₅	36.39 (2.38)	9.19 (1.12)	54.42 (1.26)	-			
<i>x</i> = 0.16							
(Cr _{0.843} Mn _{0.157}) ₂ AIC	40.78 (0.36)	7.58 (0.27)	23.37 (0.2)	28.51 (0.94)			
(Mn,Cr)₃AlC	23.38 (1.7)	32.41 (1.6)	21.16 (0.14)	23.06 (0.23)			

Table S2. The amount of secondary phases from Rietveld refinements of the powder X-ray diffrac	tion
data of $(Cr_{1-x}Mn_x)_2AIC MAX$ -phase samples before chemical treatment.	

The detected phase	Average measured atomic content, at.%				
	<i>x</i> = 0	<i>x</i> = 0.05	<i>x</i> = 0.12	<i>x</i> = 0.16	
Cr ₂ AIC	98.3	97.1	89.3	75.3	
Al ₈ Cr ₅	1.7	2.9	6.2	-	
Mn₃AlC	-	-	4.5	24.7	

According to the refinement data, undoped Cr_2AIC (x = 0) as well as Cr_2AIC doped with 5at.% Mn (x = 0.05) are almost phase pure with a small amount of AI_8Cr_5 side phase. With increase of Mn doping level (x = 0.12 and x = 0.16) the formation of inverse perovskite Mn_3AIC is observed.

Figure S1. SEM image and EDX mapping of Cr₂AlC powder after chemical treatment.

Figure S2. Magnetic high-field susceptibility $\chi_{High Field}$ vs T dependences for $(Cr_{1-x}Mn_x)_2AIC$ MAX-phase samples obtained from the hysteresis at various temperatures with x = 0 (black squares), 0.05 (blue squares), 0.12 (green squares) and 0.16 (red squares).