Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Phase transition regulation and piezoelectric performance optimization of fresnoite

crystal for high temperature acceleration sensing

Chao Jiang^a, Caizi Zhang^b, Fangfei Li^b, Li Sun^a, Yanlu Li^a, Fapeng Yu^a*, and Xian Zhao^a

^a Key Laboratory of Laser & Infrared System, Ministry of Education, State Key Laboratory of Crystal Materials, Shandong University, Jinan, China

^b State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China Email addresses: fapengyu@sdu.edu.cn

 Table S1. Atomic Coordinates and equivalent isotropic displacement parameters for Ba2

 xSrxTS crystals

Table S2. Chemical composition of grown Ba_{2-x}Sr_xTS crystal

Table S3. Thermal expansion coefficient for Ba_{2-x}Sr_xTS crystals

Table S4. Bond distances and bond valence sum for Ba_{2-x}Sr_xTS crystals

Figure S1. In- situ high temperature electron diffraction patterns collected from BTS

single crystal sample

Figure S2. Piezoelectric coefficient d_{33} and lattice constants ratio c/a versus molar fraction of Sr

Figure S3. Impedance spectra and phase angles of thickness shear mode d_{15}

Figure S4. Phase transition temperature and piezoelectric coefficient d_{15} as a function of molar fraction of Sr.

Figure S5. In-situ high temperature X-ray diffraction patterns of $Ba_2TiSi_2O_8$ (a) and Rietveld refined profile example of $Ba_2TiSi_2O_8$ at 50°C (b); In-situ high temperature X-ray diffraction patterns of $Ba_{1.1}Sr_{0.9}TiSi_2O_8$ (c) and Rietveld refined profile example of $Ba_{1.1}Sr_{0.9}TiSi_2O_8$ at 50°C (d)

Ba ₂ TiSi ₂ O ₈								
Atom	x	У	Ζ	U_{eq} (Å ² ×10 ³)				
Bal	0.8271(0)	0.3271(0)	0.0007(1)	12.33(17)				
Ti1	0.5000	0.5000	0.5358(3)	9.6(3)				
Sil	0.6280(1)	0.1280(1)	0.5141(6)	9.7(3)				
01	0.5759(7)	0.2927(6)	0.6445(10)	24.9(10)				
O2	0.6261(4)	0.1261(4)	0.2068(12)	12.2(9)				
O3	0.5000	0.0000	0.6390(19)	24.8(19)				
O4	0.5000	0.5000	0.2132(19)	19.6(16)				

Table S1. Atomic Coordinates and equivalent isotropic displacement parameters for $Ba_{2-x}Sr_xTS$ crystals

Symmetry operations: (#1) x,y,z; (#2) -y,x,z; (#3) -x,-y,z; (#4) y,-x,z; (#5) 1/2-x,1/2+y,z; (#6) 1/2+x,1/2-y,z; (#7) 1/2-y,1/2-x,z; (#8) 1/2+y,1/2+x,z

$Ba_{1.8}Sr_{0.2}TiSi_2O_8$								
Atom	x	у	Ζ	$U_{eq} (\dot{\rm A}^{2 imes 10^{3}})$				
Bal	0.82712(2)	0.32712(2)	0.19339(8)	14.23(9)				
Sr1	0.82712(2)	0.32712(2)	0.19339(8)	14.23(9)				
Ti1	0.5000	0.5000	0.7274(2)	11.7(3)				
Si1	0.62803(3)	0.12803(3)	0.7048(4)	11.7(2)				
01	0.5764(5)	0.2923(4)	0.8370(7)	29.8(8)				
O2	0.6264(3)	0.1264(6)	0.3988(7)	14.9(6)				
03	0.5000	0.0000	0.8231(11)	29.0(14)				
04	0.5000	0.5000	0.4024(19)	22.4(11)				

Symmetry operations: (#1) x,y,z; (#2) -x,-y,z; (#3) -y,x,z; (#4) y,-x,z; (#5) x+1/2,-y+1/2,z; (#6) -x+1/2,y+1/2,z; (#7) -y+1/2,-x+1/2,z; (#8) y+1/2,x+1/2,z

$Ba_{1.6}Sr_{0.4}TiSi_2O_8$								
Atom	x	У	Z	U_{eq} (Å ² ×10 ³)				
Bal	0.17286(2)	0.67286(2)	0.99873(7)	13.96(10)				

Sr1	0.17286(2)	0.67286(2)	0.99873(7)	13.96(10)
Ti1	0.5000	0.5000	0.4657(2)	12.6(2)
Sil	0.37192(11)	0.87192(11)	0.4886(4)	13.0(2)
01	0.4240(6)	0.7074(4)	0.3555(7)	34.2(10)
02	0.3739(4)	0.8739(6)	0.7958(8)	16.4(7)
03	0.5000	1.0000	0.3689(12)	34.6(19)
O4	0.5000	0.5000	0.7918(12)	23.7(13)

Symmetry operations: (#1) x,y,z; (#2) -x,-y,z; (#3) x+1/2,-y+1/2,z; (#4) -x+1/2,y+1/2,z; (#5) -y,x,z; (#6) y,-x,z; (#7) y+1/2,x+1/2,z; (#8) -y+1/2,-x+1/2,z

$Ba_{1.4}Sr_{0.6}TiSi_2O_8$								
Atom	x	У	Z	$U_{eq} (\dot{\rm A}^2 \times 10^3)$				
Bal	0.32706(7)	0.82706(7)	0.00096(15)	19.0(6)				
Sr1	0.32706(7)	0.82706(7)	0.00096(15)	19.0(6)				
Ti1	0.50000	0.50000	0.5331(9)	16.5(10)				
Sil	0.1281(3)	0.6281(3)	0.5100(7)	17.7(9)				
01	0.0000	0.5000	0.629(3)	44.0(6)				
02	0.1264 (7)	0.6264(9)	0.203(3)	19.0(2)				
O3	0.2920(15)	0.5759(17)	0.644(2)	43.0(16)				
04	0.50000	0.50000	0.206(5)	38.0(5)				

Symmetry operations: (#1) x,y,z; (#2) -y,x,z; (#3) -x,-y,z; (#4) y,-x,z; (#5) -x+1/2,y+1/2,z; (#6) x+1/2,-y+1/2,z; (#7) -y+1/2,-x+1/2,z; (#8) y+1/2,x+1/2,z

 Table S2. Chemical composition of grown Ba_{2-x}Sr_xTS crystal

		Measured value	Theoretical value
X=0.2	BaO	57.670%	55.558%
Λ-0.2	SrO	3.923%	4.172%
X -0 4	BaO	50.891%	49.385%
A=0.4	SrO	8.219%	8.344%
X=0.6	BaO	43.485%	43.212%

SrO	12.434%	12.515%

Unit (10 ⁻⁶ K ⁻¹)	Before pha	se transition	After phase transition		
	Х	Z	Х	Z	
x=0	7.96	2.30	7.98	15.0	
x=0.2	8.54	3.66	8.58	13.14	
x=0.4	7.78	4.59	8.99	13.07	
x=0.6	8.39	4.74	8.00	12.48	

Table S3. Thermal expansion coefficient for $Ba_{2-x}Sr_xTS$ crystals

Table S4. Bond distances and bond valence sum for $Ba_{2-x}Sr_xTS$ crystals

$Ba_2TiSi_2O_8$								
Ba-O1	2.993	Ti1-O1	1.963	Si1-O1	1.620			
Ba-O1	2.993	Ti1-O1	1.963	Sil-Ol	1.620			
Ba-O1	2.845	Ti1-O1	1.963	Sil-O2	1.599			
Ba-O1	2.845	Ti1-O1	1.963	Sil-O3	1.657			
Ba-O2	2.791	Ti1-O4	1.678					
Ba-O2	2.791							
Ba-O2	2.647							
Ba-O3	2.835							
1.84	469	4.1294		4.00)63			
Ba _{1.8} Sr _{0.2} TiSi ₂ O ₈								

Ba-O2	2.786	Sr -O2	2.786				
Ba-O2	2.637	Sr -O2	2.637	Ti1-O4	1.687		
Ba-O1	2.990	Sr -O1	2.990	Ti1-O1	1.964	Si1-O3	1.657
Ba-O1	2.990	Sr -O1	2.990	Ti1-O1	1.964	Si1-O2	1.588
Ba-O1	2.838	Sr -O1	2.838	Til-O1	1.964	Sil-Ol	1.617
Ba-O1	2.838	Sr-O1	2.838	Til-Ol	1.964	Si1-O1	1.617

$Ba_{1.6}Sr_{0.4}TiSi_2O_8$									
Ba-O1	2.837	Sr-O1	2.837	Ti1-O1	1.961	Si1-O1	1.619		
Ba-O1	2.837	Sr -O1	2.837	Til-Ol	1.961	Si1-O1	1.619		
Ba-O1	2.985	Sr -O1	2.985	Til-Ol	1.961	Si1-O2	1.591		
Ba-O1	2.985	Sr -O1	2.985	Til-Ol	1.961	Si1-O3	1.658		
Ba-O2	2.776	Sr -O2	2.776	Til-O4	1.689				
Ba-O2	2.776	Sr -O2	2.776						
Ba-O2	2.632	Sr -O2	2.632						
Ba-O3	2.825	Sr -O3	2.825						
1.90)58	1.21	.38	4.10)15	4.03	327		

$Ba_{1.4}Sr_{0.6}TiSi_2O_8$									
Ba-O1	2.833	Sr-O1	2.833	Ti1-O1	1.972	Si1-O1	1.622		
Ba-O1	2.833	Sr -O1	2.833	Ti1-O1	1.972	Si1-O1	1.622		
Ba-O1	2.979	Sr -O1	2.979	Ti1-O1	1.972	Si1-O2	1.598		
Ba-O1	2.979	Sr -O1	2.979	Ti1-O1	1.972	Si1-O3	1.662		
Ba-O2	2.773	Sr -O2	2.773	Til-O4	1.70				
Ba-O2	2.773	Sr -O2	2.773						
Ba-O2	2.623	Sr -O2	2.623						

Ba-O3	2.828	Sr -O3	2.828		
1.9277		1.2275		3.98138	3.9860

The phase transition for BTS crystal was characterized taking advantage of the in-situ high temperature TEM tests. In-situ high temperature transmission electron microscope (TEM) was conducted using a Titan Cubed Themis G2-300 (FEI) with a condenser spherical aberration corrector operating at an accelerating voltage of 200 kV. The BTS crystal sample was prepared by Focused Ion beam (FIB) using Helios NanoLab 460HP (FEI) and the diffraction patterns were recorded along $[2^{1}0]$ -oriention.

Results are shown in Figure S1, where obvious satellite reflections are observed at room temperature. The appearance of satellite reflections in the electron diffraction pattern proves that the BTS crystal is an incommensurate phase at room temperature. When the temperature rising up to 150°C, the intensity of the satellite reflections gradually weakens and disappears completely prior to 200°C, only the main reflection points can be observed, indicating the BTS crystal is a normal phase at high temperature above 150°C. Based on the in-situ high temperature TEM results, it can be confirmed that the phase transition type of the BTS crystal in the vicinity of 150°C is "incommensurate phase-normal phase transition".

Figure S1. In- situ high temperature electron diffraction patterns collected from BTS

single crystal sample

Figure S2. Piezoelectric coefficient d_{33} and lattice constants ratio c/a versus molar fraction

Figure S3. Impedance spectra and phase angles of thickness shear mode d_{15} .

Figure S4. Phase transition temperature and piezoelectric coefficient d_{15} as a function

of molar fraction of Sr.

The polycrystalline were checked by X-ray diffraction (XRD) pattern using the Rigaku X-ray diffractometer (Rigaku, The Woodlands, TX) with CuK α radiation (λ =1.5418Å) and nickel filter in a wide range of 2 θ from 15° to 80° with a scanning rate of 2° min⁻¹. The instrument was calibrated using the pure silicon sample provided with the instrument. The lattice parameters and other detailed structural information were obtained by the Rietveld refinement Fullprof program using a pseudo-Voigt function. The Rietveld refined profiles are shown in figure S4, where the observed pattern is consistent with the calculated pattern using the Rietveld analysis. It is noticed that a minor peak was observed at 2 θ =32.34° for x=0.9 component, which matches the highest intensity peak of SrTiO₃, (JCPDF No: #35-0734).

Figure S5. In-situ high temperature X-ray diffraction patterns of $Ba_2TiSi_2O_8$ (a) and Rietveld refined profile example of $Ba_2TiSi_2O_8$ at 50°C (b); In-situ high temperature Xray diffraction patterns of $Ba_{1.1}Sr_{0.9}TiSi_2O_8$ (c) and Rietveld refined profile example of

 $Ba_{1.1}Sr_{0.9}TiSi_2O_8$ at 50°C (d)