Electronic Supplementary Information

Design and performance of an ultra-sensitive and super-stretchable

hydrogel for artificial skin

Chunhui Luo^{a,b,c,*}, Xinyue Deng^a, Shuai Xie^a

^a College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021,

China, *Corresponding Author. E-mail address: luo@nun.edu.cn (C. Luo).

^b Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North

Minzu University, Yinchuan 750021, Ningxia, China

° Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University,

Yinchuan 750021, China

Table S1. The experimental ingredients and nomenclatures of FMCH-n

Sample	AM(g)	KPS (g)	MBAA (g)	NaCl (g)	flowerlike micelles (g)	Water (g)
FMCH-0	3.5	0.035	0.035	0	0.035	8.16
FMCH-8.2	3.5	0.035	0.035	0.669	0.035	8.16
FMCH-15.4	3.5	0.035	0.035	1.257	0.035	8.16
FMCH-26.5	3.5	0.035	0.035	2.162	0.035	8.16

hydrogels.

Fig. S1 FT-IR spectra of PEG_{181} and PEG_{181} -DL.

Fig. S2 Diameter and photo image of the flowerlike micelle.

Fig. S3 The (a) conductive, (b) GF, (c) toughness and (d) Young's

Modulus of the FMCH-n hydrogels prepared with various mass fraction

of NaCl.

Fig. S4 Diameter of the flowerlike micelle with various mass fraction of

NaCl.

Fig. S5 The phote of FMCH-26.5 hydrogel.

Fig. S6 50 cyclic loading-unloading tensile tests of the FMCH-15.4

hydrogel.

Fig. S7 Compression-relaxation cycles with maximum strain of 75%.

Fig. S8 Photographs of the FMCH-0 hydrogel after stretching 100 times

its original length and relaxing at room temperature overnight.

Fig. S9 The LED light became dim after stretching.

Fig. S10 The relative resistance changes of the (a) FMCH-8.2 hydrogel and (b) FMCH-26.5 hydrogel sensor during stretching process.

Fig. S11 The cycling stability test of the FMCH-15.4 hydrogel to the

tensile stress for 100 cycles.

Fig. S12 The relative resistance changes of the FMCH-15.4 gel to monitor various human motions: (a) finger bending at different angles (0°, 30°, 45°, 60°, 90° and 120°); (b) touching.

Fig. S13 The photos of FMCH-0 and FMCH-15.4 hydrogels at -20 °C.

Fig. S14 The variations in relative resistance and the sensitivity of

FMCH-15.4 hydrogel as a function of tensile strain at -20 °C.

Table S2. The water content and gauge factor of FMCH-15.4 hydrogel

Time (h)	Water content (%)	GF
0.5	57.71	8.93
1	54.37	6.09
2	51.06	4.69
3	49.75	1.99
24	26.34	N.A.

for different time at room temperature.