Supplementary materials

The Raman spectroscopy was used to analyze the relationship between dielectric properties and crystal structure of BNT-AGx ceramics in this work. As shown in Table S1, for all 8d and 4c wyckoff positions with one 4a position, BNT-AGx structure belonged to the space group Pbnm and had 8 types vibration modes in lattice: A_g , A_u , B_{1g} , B_{1u} , B_{2g} , B_{2u} . B_{3g} and B_{3u} based on the group theory and D_{2h} point group. The irreducible representations for the structure were obtained by the following equation^[1]:

$$n_m = \frac{1}{h} \sum_R \chi(R) U(R) (\pm 1 + 2\cos\theta_R)$$

Here, n_m was the number of vibrational modes with a symmetry presented by the mth irreducible representation, the h=8 was derived from the order of vector group that made up of all symmetry elements R, $\chi(R)$ was the reducible representation of R, U(R) was the number of atoms under the symmetry operations of space group, and $(\pm 1+2\cos\theta_R)$ was the trace of the matrix R.

D_{2h}	R									Number of
	Е	C_2^z	C_2^z	C_2^z	Ι	σ_{xy}	σ_{xz}	σ_{yz}	Functions	vibration modes
Ag	1	1	1	1	1	1	1	1	x^2, y^2, z^2	71
B_{1g}	1	1	-1	-1	1	1	-1	-1	xy, J _z	55
B_{2g}	1	-1	1	-1	1	-1	1	-1	xz, J _y	71
B_{3g}	1	-1	-1	1	1	-1	-1	1	yz, J _x	55
A_u	1	1	1	1	-1	-1	-1	-1	-	58
B_{1u}	1	1	-1	-1	-1	-1	1	1	Z	74
B_{2u}	1	-1	1	-1	-1	1	-1	1	У	58
B_{3u}	1	-1	-1	1	-1	1	1	-1	X	74
U(R)	172	0	0	0	4	64	0	0		
$\pm 1 \pm 2 \cos \theta_R$	3	-1	-1	-1	-3	1	1	1		

Table 1 Date used for irreducible representation analysis

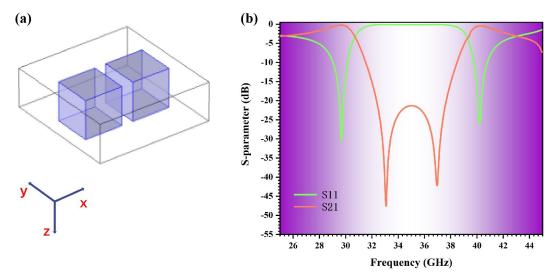


Fig. S1 Simulated results of (a) the BNT-AGx reflective filter unit cell structure and (b) the Sparameter.

Here, we utilized a dimer structure $(1 \times 1 \times 1 \text{ mm}^3, \text{ in Fig. S1(a)})$ embedded in FR4 (p=3 mm, the distance between two blocks was 1 mm) to achieve the mode coupling between BNT-AGx blocks, forming a broadband reflective filter. The transmission stop-band was about 7 GHz (@ 10 dB) with low insertion loss about 0.5 dB, as shown in Fig. S1(b).

Reference

 S. R. Zhang, Z. X. Fang, Z. Xiong, B. Tang, C. T. Yang, J. Alloys Compd. 2017, 723, 580.