Electronic Supplementary Information

Epitaxial growth of ZrSe₂ nanosheets on sapphire by chemical vapor deposition for optoelectronic application

Yan Tian,^a Maoyuan Zheng,^{a,c} Yong Cheng,^a Zhigang Yin,^a Ji Jiang,^a Gaokai Wang,^a Jingren Chen,^a Xingxing Li,^b Jing Qi^c and Xingwang Zhang^{*a,b}

^a Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
^b Joint Lab of Digital Optical Chip, Wuyi University, Jiangmen 529020, P. R. China

^c School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China

* Corresponding author. E-mail: <u>xwzhang@semi.ac.cn</u>

Figure S1. Schematic diagram of the CVD system with two independently controlled temperature zones for the epitaxial growth of $ZrSe_2$ layers. The diameter and length of the quartz tube and 5 cm and 150 cm, respectively. $ZrCl_4$ powder and sapphire substrates were put in the center of low-temperature (LT) and high-temperature (HT) zones, respectively. The Se and $ZrCl_4$ powders were typically placed at the upstream 37 cm and 45 cm away from the substrate, respectively.

Figure S2. The temperature and the gas flow programming process used for a typical growth of $ZrSe_2$ layers by CVD. A burst of Ar flow for 2 min at 550 °C occurred to drive away premature excess $ZrCl_4$ vapor and prevent the over- or undersupply of Cl and Se.

Figure S3. Electronic band structures of bulk 1T-ZrSe_2 with the theoretically optimized lattice constants on the relaxed structure (a = b = 3.798 Å, c = 6.878 Å) under d) PBE and e) HSE06. Red lines indicate the VBM and CBM.

Figure S4. Typical SEM images with different magnifications of the CVD-grown ZrSe₂ nanosheets on sapphire substrate.

Figure S5. The SEM images of the ZrSe₂ nanosheets grown on sapphire substrates at different Sesource temperatures of a) 250, b) 300, c) 350 °C.

Figure S6. a) The photograph and b) optical micrograph of the $ZrSe_2$ -based photodetector. The distance between two adjacent Au electrodes is estimated to be 70 μ m.

Figure S7. Operational stability of the $ZrSe_2$ photodetector measured at 10 V for 40 switching cycles.