Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Color tuning of di-boron derived TADF emitters: molecular design and property prediction

Jiaqi Li, Fei Zhao, Yanan Chen, Mingfan Zhang, Tingyu Li, and Houyu Zhang*

State key laboratory of supramolecular structure and materials,

Institute of theoretical chemistry, College of Chemistry, Jilin university,

Changchun 130012, P.R. China

*Email: houyuzhang@jlu.edu.cn

Contents

Table S1 Calculated HOMO energies of molecule 1a with different DFT functionals.

Table S2 Calculated absorption and emission wavelengths of 1a with different DFT functionals.

 Table S3 Calculated AIP and VIP values with PBE0 functional, absorption and emission wavelengths

 with BMK functional for molecule 1b.

Table S4 Calculated HOMO and LUMO of the electron-donating fragments CZ and DMAC.

Table S5 Calculated HOMO and LUMO of the different electron-withdrawing units.

- Table S6 Calculated absorption excited energies, dominant orbital excitations, oscillator strengths and absorption wavelengths from TD-DFT calculations for the molecules.
- Table S7 Calculated emission energies, dominant orbital excitations, oscillator strengths and emission

 wavelengths from TD-DFT calculations for the molecules.
- Fig. S1 Schematic diagram of the potential energy surfaces and computational details about TADF.

Fig. S2 H-H interatomic repulsion effect between donor unit and phenyl group.

Fig. S3 Structural changes between the optimized structures.

Fig. S4 Chemical structure and optimized structure of molecule 2a-Me.

Fig. S5 Plots of the orbitals involved in the transitions for all molecules.

Fig. S6 NTO analysis for the S_1 and T_n excited states for molecules in series 2 and 3.

Fig. S7 NTO analysis for molecule 1b at dihedral angle $\alpha = 60^{\circ}$.

Fig. S8 Calculated TADF rate constants and NTO analysis for molecule 2a-Me.

Fig. S9 Calculated relative energies and oscillator strengths in the S₁ state of molecule 1b as function of the twisted angles.

Table S1 Calculated HOMO energies (eV) of molecule **1a** in dichloromethane solution and in gas phase (in parentheses) with different DFT functionals with a fixed percentage of nonlocal Hartree-Fock exchange (**HF**_{exc}).

	B3LYP	PBE0	BMK	CAM-B3LYP	Exptl. ^a
HFexc	20%	25%	42%	19% at SR and 65% at LR	
HOMO	-5.41 (-5.25)	-5.69 (-5.51)	-6.14 (-5.97)	-6.55 (-6.55)	-5.57
^a From ref	25.				

Table S2 Calculated absorption wavelength (λ_{abs}) of molecule **1a** in toluene solution and the emission wavelength (λ_{em}) in gas environment with different DFT functionals with a fixed percentage of nonlocal Hartree-Fock exchange (**HF**_{exc}).

	B3LYP	PBE0	BMK	CAM-B3LYP	Exptl. ⁴
HFexc	20%	25%	42%	19% at SR and 65% at LR	
λ _{abs} (nm)	379	359	332	300	342
	564	517	421	362	425
λ _{em} (nm)	711	638	531	437	524

^aFrom ref 25.

Table S3 Calculated AIP and VIP (in parentheses) values (eV) with PBE0 functional and calculated λ_{abs} and λ_{em} with BMK functional for molecule **1b** in gas phase.

1b	Calculated values	Exptl. ^b
AIP (VIP)	5.33 (5.36)	5.56
λ _{abs} (nm)	485	480
λ _{em} (nm)	584	587
^b From ref 26.		

Table S4 Calculated HOMO and LUMO of the electron-donating fragments CZ and DMAC by DFT at the PBE0/6-31G(d, p) level.

Donor	Structure	НОМО		LUMO	
CZ	$\langle \dot{\gamma} \dot{\gamma} \dot{\gamma}$	22	-5.73 eV		-0.56 eV
DMAC	Û,Û		-5.13 eV		-0.05 eV

Table S5 Calculated HOMO	and LUMO of	f the different	electron-withdrawing	units by DFT at the
PBE0/6-31G(d, p) level.				

Acceptor	Structure	HO	НОМО		LUMO	
1	****	***	-6.39 eV		-2.46 eV	
2			-6.34 eV		-2.07 eV	
3		38338 38338	-6.32 eV	00-00 00-00 00-00	-2.96 eV	

Table S6 Calculated absorption excited energies, dominant orbital excitations, oscillator strengths and absorption wavelengths from TD-DFT calculations for the molecules in toluene solvent.

Molecule	State	ΔE (eV)	Excitation	$\lambda_{abs}(nm)$	f
1a	\mathbf{S}_1	2.9445	$H \rightarrow L (83\%)$	421.1	0.0008
	\mathbf{S}_{10}	4.0313	$\text{H-11} \rightarrow \text{L} (82\%)$	307.6	0.1764
	S_{12}	4.3214	$\mathrm{H} \rightarrow \mathrm{L} + 3 \; (45\%)$	286.9	0.1936
			$\text{H-1} \rightarrow \text{L+2} (44\%)$		
	S_{18}	4.7402	$\mathrm{H} \rightarrow \mathrm{L} + 4 \; (42\%)$	261.6	1.1354
			$H-1 \rightarrow L+5 (40\%)$		
	S ₃₆	5.6175	$H-2 \rightarrow L +4 (29\%)$	220.7	0.7955
			$\text{H-3} \rightarrow \text{L+5} (28\%)$		
1b	\mathbf{S}_1	2.7057	$H \rightarrow L (100\%)$	458.2	0
	S_8	2.5541	$\text{H-1} \rightarrow \text{L} (100\%)$	485.4	0.0001
	S_{15}	4.4608	$H-1 \rightarrow L+5 (40\%)$	277.9	0.2062
			$H-1 \rightarrow L+6 (26\%)$		
	S_{28}	4.9302	$\text{H-15} \rightarrow \text{L} (95\%)$	251.5	0.6599
	S ₃₃	5.3174	$\text{H-10} \rightarrow \text{L+1} (82\%)$	233.2	0.9681
2a	S_1	3.2917	$H \rightarrow L (90\%)$	376.7	0.8692
	S_4	3.7653	$H-4 \rightarrow L (93\%)$	329.3	0.2739
	S_{11}	4.3349	$\text{H-8} \rightarrow \text{L} (38\%)$	286.0	0.6258
			$H \rightarrow L +3 (26\%)$		
	S_{24}	5.1565	$\text{H-5} \rightarrow \text{L+1} (80\%)$	240.4	0.5135
	S ₃₀	5.3398	$H-1 \rightarrow L+5 (41\%)$	232.2	0.2641
			$H-6 \rightarrow L+1 (28\%)$		
	S ₃₄	5.4718	$H \rightarrow L + 9 (34\%)$	226.6	0.8163
			H-1 \rightarrow L +8 (32%)		

2b	S_1	2.8738	$\mathrm{H} \rightarrow \mathrm{L} \ (93\%)$	431.4	0.0038
	S_4	3.7360	$\text{H-2} \rightarrow \text{L} (91\%)$	331.9	0.2924
	S_6	4.0706	$\text{H-8} \rightarrow \text{L} (94\%)$	304.6	1.2396
	S_{18}	4.6447	$\mathrm{H} \rightarrow \mathrm{L+8}~(46\%)$	266.9	0.6060
			$H-1 \rightarrow L+7 (38\%)$		
	S_{32}	5.1464	$\text{H-4} \rightarrow \text{L+1} (87\%)$	240.9	0.5229
	S_{50}	5.9466	$H \rightarrow L + 11 (28\%)$	208.5	0.1280
			$H-7 \rightarrow L+1 (21\%)$		
3a	S_1	2.3545	$H \rightarrow L (93\%)$	526.6	0
	S ₁₅	3.5286	$\text{H-13} \rightarrow \text{L} (58\%)$	351.4	0.1923
			$\text{H-21} \rightarrow \text{L} (28\%)$		
	S ₁₉	3.5924	$\text{H-21} \rightarrow \text{L} (54\%)$	345.1	0.2398
			$H-13 \rightarrow L+1 (31\%)$		
	S_{40}	4.3003	$H-1 \rightarrow L+4 (31\%)$	288.3	0.3162
			$H \rightarrow L + 5 (29\%)$		
	S_{49}	4.6351	$H \rightarrow L + 8 (21\%)$	267.5	2.2638
			$H-3 \rightarrow L+9 (19\%)$		
			$H-2 \rightarrow L+10 (19\%)$		
3b	S_1	2.1612	$H \rightarrow L (99\%)$	573.7	0.0004
	S_{14}	3.4806	$\text{H-12} \rightarrow \text{L} (59\%)$	356.2	0.0671
	S_{18}	3.5883	$H-25 \rightarrow L+1 (69\%)$	345.5	0.3043
	S_{34}	4.1155	$H-29 \rightarrow L+1 (60\%)$	301.3	0.0748
	S_{50}	4.4546	$H-2 \rightarrow L+11 (22\%)$	278.3	0.2700
			$H-3 \rightarrow L+10 (21\%)$		
			$H-1 \rightarrow L + 8 (20\%)$		

Table S7 Calculated emission energies, dominant orbital excitations, oscillator strengths and emission wavelengths from TD-DFT calculations for the molecules.

Molecule	State	ΔE (eV)	Excitation	$\lambda_{em}(nm)$	f
1a	\mathbf{S}_1	2.3342	$\mathrm{H} ightarrow \mathrm{L}$ (90%)	531.2	0.0013
1b	\mathbf{S}_1	2.1238	$\mathrm{H} \rightarrow \mathrm{L} (100\%)$	583.8	0.0001
2a	\mathbf{S}_1	3.0721	$\mathrm{H} \rightarrow \mathrm{L} \ (90\%)$	403.6	0.5888
2b	\mathbf{S}_1	2.5410	$H \rightarrow L (95\%)$	487.9	0.0007
3a	\mathbf{S}_1	1.8861	$\mathrm{H} \rightarrow \mathrm{L} \ (95\%)$	657.4	0.0075
3b	\mathbf{S}_1	1.6978	$H \rightarrow L (96\%)$	730.3	0.0005

Fig. S1 Schematic diagram of the potential energy surfaces and computational details for ΔE_{ST} and reorganization energies.

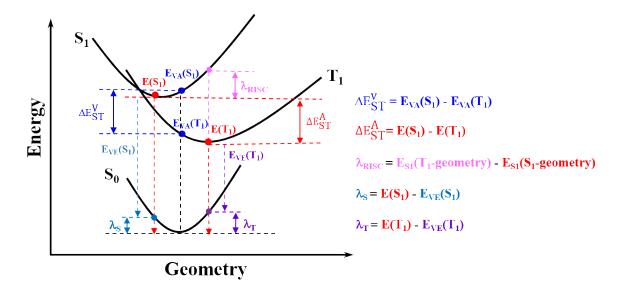
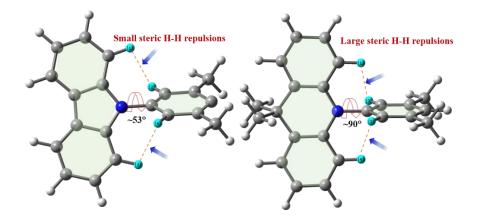



Fig. S2 H-H interatomic repulsion effect between donor unit and phenyl group.

Fig. S3 Structural changes between the optimized structures of S_0 and S_1 , S_0 and T_1 , and S_1 and T_1 states (S_0 , S_1 , and T_1 structures are depicted in grey, red, and blue, respectively).

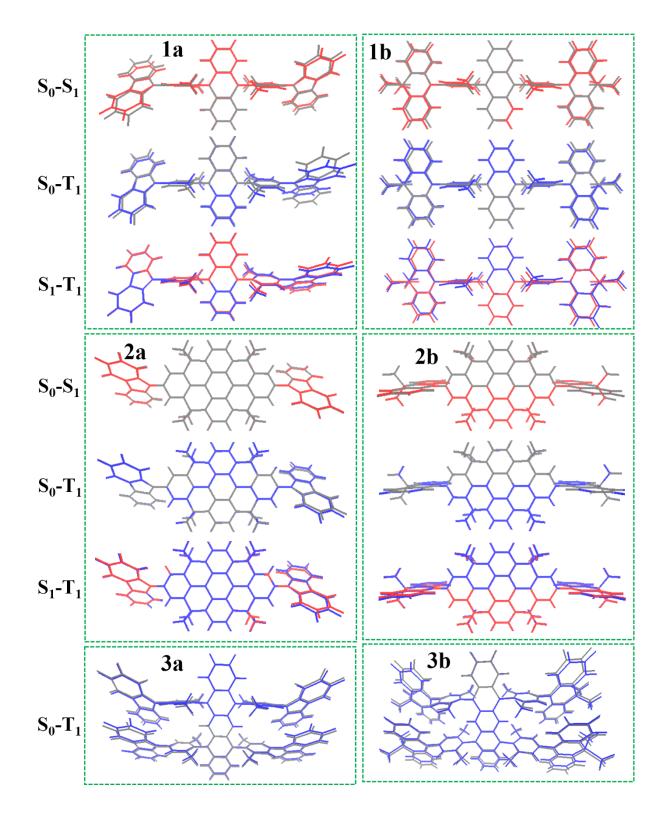
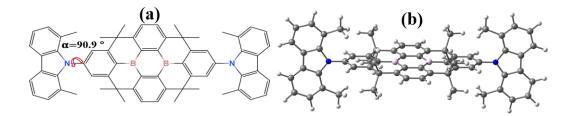



Fig. S4 Chemical structure (a) and optimized structure (b) of molecule 2a-Me.

Fig. S5 Plots of the orbitals involved in the transitions for all molecules calculated at the BMK/6-31G(d, p) level (saturated H atoms are not shown).

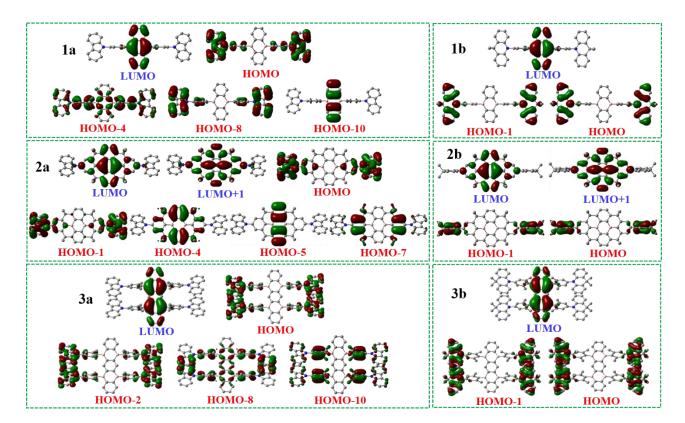


Fig. S6 NTO analysis for the S_1 and T_n excited states for molecules in series 2 and 3 (saturated H atoms are not shown).

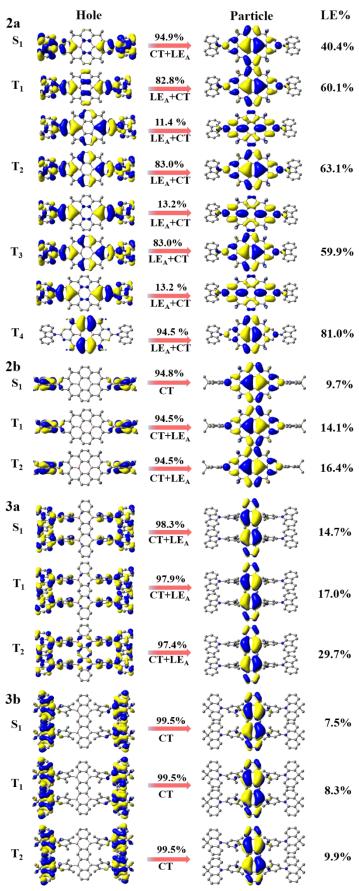


Fig. S7 NTO analysis for molecule 1b at dihedral angle $\alpha = 60^{\circ}$.

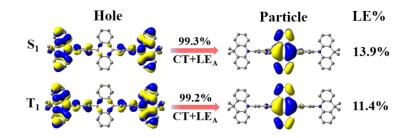


Fig. S8 Calculated TADF rate constants and NTO analysis for molecule 2a-Me.

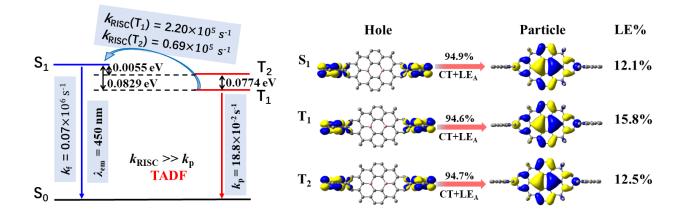
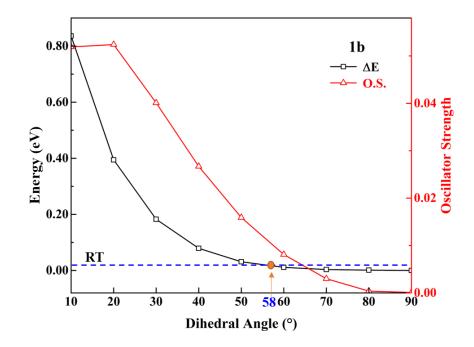



Fig. S9 Calculated relative energies and oscillator strengths in the S_1 state of molecule 1b as function of the twisted angles. The blue dashed line labels the thermally activated energy (0.026 eV) at room temperature.

