Supporting Information (SI)

Configurationally stable helical tetradentate $\mathbf{P t}(\mathrm{II})$ complexes for organic light-emitting diodes with circularly polarized electroluminescence

Li Yuan, ${ }^{1}$ Ting-Ting Liu, ${ }^{1}$ Meng-Xi Mao, ${ }^{1}$ Xu-Feng Luo ${ }^{1}$ and You-Xuan Zheng ${ }^{1,2 *}$
${ }^{1}$ State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China. E-mail: yxzheng@nju.edu.cn.
${ }^{2}$ Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.

S1. General information

The starting reactants and solvents were used as commercial grade without further purification. NMR measurements were conducted on a Bruker AM 400/500 spectrometer. The mass spectra were recorded by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (autoflex TOF/TOF, Bruker Daltonics). Absorption and photoluminescence spectra were measured on a UV-3100 spectrophotometer and a Hitachi F4600 photoluminescence spectrophotometer, respectively. Cyclic voltammetry measurements were conducted on MPI-A multifunctional electrochemical and chemiluminescent system (Xi'an Remex Analytical Instrument Ltd. Co., China) at room temperature, with a polished Pt plate as the working electrode, a platinum thread as the counter electrode and $\mathrm{Ag}-\mathrm{AgNO}_{3}(0.1$ M) in $\mathrm{CH}_{3} \mathrm{CN}$ as the reference electrode, tetra-nbutylammonium perchlorate (0.1 M) was used as the supporting electrolyte, using $\mathrm{Fc}^{+} / \mathrm{Fc}$ as the external standard, with a scan rate of $0.1 \mathrm{~V} / \mathrm{s}$. The HOMO and LUMO levels were obtained by the following equation: $\mathrm{HOMO}=-\left(4.8+E_{\mathrm{ox}}\right)$ $\mathrm{eV}, \mathrm{LUMO}=\mathrm{HOMO}+E_{\mathrm{g}}$, and E_{g} values were calculated from the UV-vis absorption spectra. The molecular simulations were carried out by density functional theory (DFT) B3LYP/631G (d,p) method with GenECP basis set specifically for the calculation of Pt(II) center. The absolute photoluminescence quantum yields (Φ) and the decay lifetimes of the compounds were measured with HORIBA FL3 fluorescence spectrometer. Thermogravimetric analysis (TGA) measurements were performed on a Pyris 1 DSC under nitrogen at a heating rate of 10 ${ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The circular dichroism (CD) spectra were measured on a Jasco J-810 circular dichroism spectrometer with "Standard" sensitivity. The circularly polarized luminescence (CPL) and circularly polarized electroluminescence (CPEL) spectra were measured on a Jasco CPL-300 spectrophotometer with "Standard" sensitivity at $100 \mathrm{~nm} / \mathrm{min}$ scan speed and respond time of 4.0 s employing "slit" mode.

S2. Experiment section

2.1 Synthesis routes and procedures for Pt1, Pt2, Pt3.

Scheme 1. Synthetic strategy to obtain the chiral tetradentate $\mathrm{Pt}(\mathrm{II})$ complexes.

2.1.1 Synthesis of 2-methoxy-9H-carbazole (1)

In a three-necked flask, iodomethane $(1.06 \mathrm{~g}, 7.5 \mathrm{mmol})$ was slowly added to the mixture of $9 H$-carbazol-2-ol ($0.96 \mathrm{~g}, 5 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.04 \mathrm{~g}, 7.5 \mathrm{mmol})$ in 30 mL DMF and then stirred at room temperature for 5 hours, after which the mixture was diluted with water (200 $\mathrm{ml})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{ml})$. The combined organic layers were washed with saturated solution of NaCl before dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain the crude product. The residue was purified through column chromatography on silica gel using hexane/dichloromethane (2:1) as eluent to obtain the desired product with a yield of 95%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (ddd, $J=11.5,9.1,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.5,2.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.08$ (s), 140.82 (s , 139.51 (s), 124.55 (s), 123.54 (s$), 121.05$ (s$), 119.57$ (s$), 119.49$ (s), 117.27 (s), 110.31 (s$), 108.16$ (s), 94.73 (s), 55.64 (s).

2.2.2 Synthesis of 2-methoxy-9-(quinolin-2-yl)-9H-carbazole (2)

A mixture of $1(0.98 \mathrm{~g}, 5 \mathrm{mmol})$, 2-bromoquinoline $(1.03 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{CuI}(0.10 \mathrm{~g}, 0.5$ mmol), 1,10-phenanthroline ($0.18 \mathrm{~g}, 1 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10 \mathrm{mmol}), 18$-crown-6 (0.26 g , 0.5 mmol) was dissolved in toluene (20 ml) filled with nitrogen. Then the tube was sealed and the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for about 24 h , after which the mixture was cooled down to ambient temperature. Then the mixture was filtered and the filtrate was concentrated under reduced pressure to obtain the crude product. The residue was purified through column chromatography on silica gel using hexane/dichloromethane (5:1) as eluent to obtain the desired product with a yield of 94%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{dt}, J=6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.5,2.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.90 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.30$ (s), 150.90 (s), 147.66 (s), 140.88 (s), 139.57 (s), 138.76 (s), 130.34 (s), 128.69 (s), 127.63 (s), 126.45 (s), 126.35 (s), 124.98 (s), 124.78 (s),

2.2.3 Synthesis of 9-(quinolin-2-yl)-9H-carbazol-2-ol (3)

In a three-necked flask, $2(1.62 \mathrm{~g}, 5 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under the protection of nitrogen. After the solution was cooled down to $0^{\circ} \mathrm{C}, \mathrm{BBr}_{3}(15 \mathrm{~mL}, 15 \mathrm{mmol}(1 \mathrm{M} / \mathrm{L}))$ was slowly added to the solution. The mixture was stirred at room temperature for 2 hours and poured into excessive NaHCO_{3} solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{ml})$. The combined organic layers were washed with saturated solution of NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain the crude product. The residue was purified through column chromatography on silica gel using hexane/ ethyl acetate (6:1) as eluent to obtain the desired product with a yield of 95%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.79(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}$, $1 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$.

2.2.4 Synthesis of 2-bromo-9-(quinolin-2-yl)-9H-carbazole (4)

A mixture of 2-bromo-9H-carbazole ($1.22 \mathrm{~g}, 5 \mathrm{mmol}$), 2-bromoquinoline ($1.03 \mathrm{~g}, 5 \mathrm{mmol}$) and $\mathrm{CuI}(0.10 \mathrm{~g}, 0.5 \mathrm{mmol}), 1,10$-phenanthroline $(0.18 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10 \mathrm{mmol})$, 18-crown-6 $(0.26 \mathrm{~g}, 1 \mathrm{mmol})$ was dissolved in toluene $(20 \mathrm{ml})$ filled with nitrogen. Then the tube was sealed and the mixture was stirred at $110^{\circ} \mathrm{C}$ for about 24 h , after which the mixture was cooled down to ambient temperature. Then the mixture was filtered and the filtrate was concentrated under reduced pressure to obtain the crude product. The residue was purified through column chromatography on silica gel using hexane/dichloromethane (5:1) as eluent to obtain the desired product with a yield of 94%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=4.8,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.10$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{ddd}, J=8.4,7.0,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, J=8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.32(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.32(\mathrm{~s}), 147.66$ (s), 140.37 (s$), 139.65$ (s$), 139.12$ (s$), 130.58$ (s$), 128.85$ (s$), 127.69$ (s$), 126.74$ (s$), 126.70$ (s), 126.66 (s$), 124.42$ (s), 123.96 (s), 123.50 (s), 121.65 (s), 121.33 (s), 120.31 (s), 119.93 (s), 117.56 (s), 114.81 (s), 111.56 (s).

2.2.5 Synthesis of 3-(quinolin-2-yl)phenol (5)

To a dry pressure Schlenk tub, added 2-bromoquinoline (1.03 g, 5 mmol), (3hydroxyphenyl)boronic acid $(0.90 \mathrm{~g}, 6.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.58 \mathrm{~g}, 0.1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(0.79 \mathrm{~g}, 7.5 \mathrm{mmol})$. Then THF $(30 \mathrm{ml})$ and water $(10 \mathrm{ml})$ were added, and the tube filled with nitrogen was sealed. The mixture was stirred at $75^{\circ} \mathrm{C}$ for 6 hours and cooled down to ambient temperature. Then the mixture was diluted with water $(500 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 40 \mathrm{ml})$. The combined organic layers were washed with saturated solution of NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to obtain the crude product. The residue was purified through column chromatography on silica gel using hexane/ethyl acetate (5:1) as eluent to obtain the desired product with a yield of 97%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.72$ (ddd, $J=$ $8.4,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{ddd}, J=8.1,2.5,0.7$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 157.70$ (s), 156.84 (s), 147.82 (s), 140.88 (s), 137.35 (s), 130.11 (s), 130.06 (s), 129.05 (s), 127.56 (s), 127.34 (s), 126.54 (s), 119.70 (s), 119.67 (s), 116.98 (s), 115.03 (s).

2.2.6 Synthesis of 3-(benzo[h]quinolin-2-yl)phenol (6)

Compound 6 was synthesized with the above process but replacing 2-bromoquinoline by 2 chlorobenzo[h]quinoline ${ }^{1}(1.07 \mathrm{~g}, 5 \mathrm{mmol})$ with a yield of 97%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.48(\mathrm{dd}, J=8.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.78-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 156.14$ (s), 154.90 (s), 146.07 (s), 141.30 (s), 136.68 (s), 133.91 (s), 131.65 (s), 130.07 (s), 128.26 (s), 127.82 (s), 127.64 (s), 126.95 (s), 125.36 (s), 125.05 (s), 124.74 (s), 119.93 (s , 118.97 (s), 116.35 (s$), 114.38$ (s).

2.2.7 Synthesis of 2,2'-oxybis(9-(quinolin-2-yl)-9H-carbazole) (L1)

A mixture of $3(0.31 \mathrm{~g}, 1 \mathrm{mmol}), 4(0.37 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CuI}(0.02 \mathrm{~g}, 0.1 \mathrm{mmol})$, D-proline $(0.02 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.27 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved in DMSO (5 ml) filled with nitrogen in a dry pressure Schlenk tube. The tube was sealed and the mixture was stirred at
$110{ }^{\circ} \mathrm{C}$ for about 24 h , after which the mixture was cooled down to ambient temperature. Then the mixture was filtered and the filtrate was concentrated under reduced pressure to obtain the crude product. The residue was purified through column chromatography on silica gel using hexane/dichloromethane $(1: 3)$ as eluent to obtain the desired product with a yield of 30\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=7.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=8.4,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40$ $(\mathrm{m}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 155.86 (s), 149.57 (s), 146.55 (s), 139.56 (s), 138.87 (s), 137.81 (s), 129.29 (s), 127.67 (s), 126.52 (s), 125.40 (s), 125.33 (s), 124.59 (s), 123.46 (s), 120.39 (s), 120.00 (s), 119.38 (s), 118.75 (s), 116.34 (s), 112.11 (s), 110.45 (s$), 101.32$ (s).

2.2.8 Synthesis of 9-(quinolin-2-yl)-2-(3-(quinolin-2-yl)phenoxy)-9H-carbazole (L2)

Ligand L2 was synthesized with similar process for L1 but replacing compound 3 by 5 with a yield of 35%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.85-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.46$ (s), 156.61 (s), 156.08 (s), 150.62 (s), 148.09 (s), 147.64 (s), 141.43 (s), 140.64 (s), 139.98 (s), 138.91 (s), 136.94 (s), 130.35 (s), 130.16 (s), 129.77 (s), 129.72 (s), 128.77 (s), 127.59 (s), 127.44 (s), 127.28 (s), 126.51 (s), 126.46 (s$), 126.42$ (s$), 125.75$ (s$), 124.46$ (s$), 122.29$ (s), 121.49 (s), 121.17 (s), 120.72 (s), 119.86 (s$), 119.43$ (s$), 119.02$ (s$), 117.71$ (s$), 117.50$ (s), 113.51 (s$), 111.48$ (s), 102.81 (s$)$.

2.2.9 Synthesis of 2-(3-((9-(quinolin-2-yl)-9H-carbazol-2-yl)oxy)phenyl)benzo[h] quinoline (L3)

Ligand L3 was synthesized with similar process for L1 but replacing compound 3 by 5 with a yield of 35%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.33(\mathrm{dd}, J=5.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{ddd}, J=11.7,8.3,4.6 \mathrm{~Hz}, 5 \mathrm{H}), 7.89(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.78$ (m, 1H), $7.77(\mathrm{dd}, J=4.5,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=8.7,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.56(\mathrm{~m}, 4 \mathrm{H})$, $7.44(\mathrm{dd}, J=15.5,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=$ 6.7, 4.1, $2.2 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.53$ (s), 156.20 (s), 154.73 (s), 150.64 (s), 147.64 (s$), 146.20$ (s$), 141.60$ (s$), 140.71$ (s , 139.99 (s$), 138.91$ (s$), 136.61$ (s$), 133.87$ (s), 131.73 (s), 130.37 (s), 130.11 (s), 128.78 (s), 128.22 (s), 127.75 (s), 127.65 (s), 127.59 (s), 126.97 (s), 126.51 (s), 126.42 (s), 125.76 (s), 125.35 (s), 125.01 (s), 124.78 (s), 124.51 (s),
122.12 (s), 121.51 (s), 121.16 (s), 120.75 ($s), 119.88$ ($s), 119.22$ (s), 118.89 (s), 117.71 (s), 117.49 (s), 113.52 (s), 111.49 (s), 102.88 (s).

2.2.10 General synthesis of Pt1-Pt3

A mixture of ligand (L1-L3) $(0.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{PtCl}_{4}(0.21 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $n-\mathrm{Bu}_{4} \mathrm{NBr}(0.02 \mathrm{~g}$, 0.05 mmol) was dissolved acetic acid (30 ml) filled with nitrogen in a dry pressure Schlenk tube. The tube was sealed and the mixture was stirred at ambient temperature for 12 hours. Then the mixture was heated at $110^{\circ} \mathrm{C}$ for 36 hours, after which the mixture was cooled down to ambient temperature. Then the mixture was diluted with water (200 ml), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{ml})$. The combined organic layers were washed with saturated solution of NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to obtain the crude product. The residue was purified through column chromatography on silica gel using hexane/ethyl acetate ($8: 1$) as eluent to obtain the desired product with a yield of 16%.

Pt1: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.09$ (t, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=13.1,6.9 \mathrm{~Hz}, 6 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$. MALDI-TOF-MS found: 797.176. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 151.87$ (s), 148.05 (s), 147.43 (s), 143.39 (s), 139.11 (s), 138.97 (s$), 130.26$ (s$), 129.17$ (s$), 128.57$ (s$), 127.28$ (s$), 126.31$ (s$), 125.25$ (s), 123.78 (s$), 123.43$ (s), 120.13 (s), 116.41 (s$), 115.66$ (s$), 115.06$ (s), 115.05 (s), 113.45 (s), 95.71 (s).

Pt2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H})$, $7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.93 (dt, $J=20.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}$). MALDI-TOF-MS found: 707.006. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.30(\mathrm{~s}), 152.62(\mathrm{~s}), 152.49(\mathrm{~s}), 149.19(\mathrm{~s}), 148.61$ (s), 148.20 (s), 146.89 (s), 143.49 (s), 139.44 (s), 139.21 (s), 138.35 (s), 130.29 (s), 130.03 (s), 129.56 (s), 129.15 (s), 127.81 (s), 127.69 (s), 127.26 (s), 126.47 (s), 126.07 (s), 126.00 (s), 125.90 (s), 125.40 (s), 124.49 (s), 123.95 (s), 123.47 (s), 120.33 (s), 120.21 (s), 119.24 (s), 117.58 (s), 116.81 (s), 116.26 (s), 115.33 (s), 114.67 (s$), 113.88$ (s$), 100.24$ (s).

Pt3: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 10.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=7.6$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.3,4.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=12.2,4.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9$ Hz, 2H), 7.12 (ddd, $J=8.2,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{ddd}, J=8.6,7.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H})$. MALDI-TOF-MS found: 757.083. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 163.76$ (s), 152.02 (s), 151.92 (s), 148.33 (s), 148.22 (s$), 147.79$ (s), 146.65 (s), 144.00 (s), 139.57 (s), 138.69 (s), 138.02 (s), 133.81 (s), 129.97 (s), 128.44 (s), 128.39 (s), 128.19 (s), 128.07 (s), 127.81 (s), 127.28 (s), 126.65 (s), 126.51 (s), 126.03 (s), 125.22 (s), 124.80 (s), 124.42 (s),
124.31 (s), 124.10 (s), 123.48 (s), 123.33 (s), 123.26 (s), 120.08 (s), 119.98 (s), 118.04 (s), 117.69 (s), 116.58 (s), 115.88 (s), 115.00 (s), 114.17 (s), 113.55 (s), 98.25 (s).

2.2 NMR spectra

Fig. S1 The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 in CDCl_{3}.

Fig. $\mathbf{S} 2$ The ${ }^{13} \mathrm{C}$ NMR spectrum of 1 in CDCl_{3}.

Fig. $\mathbf{S 3}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 in CDCl_{3}.

Fig. S4 The ${ }^{13} \mathrm{C}$ NMR spectrum of 2 in CDCl_{3}.

Fig. S5 The ${ }^{1} \mathrm{H}$ NMR spectrum of 3 in CDCl_{3}.

Fig. S6 The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 in CDCl_{3}.

Fig. S7 The ${ }^{13} \mathrm{C}$ NMR spectrum of 4 in CDCl_{3}.

Fig. $\mathbf{S 8}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in CDCl_{3}.

Fig. S9 The ${ }^{13} \mathrm{C}$ NMR spectrum of 5 in CDCl_{3}.

Fig. S10 The ${ }^{1} \mathrm{H}$ NMR spectrum of 6 in CDCl_{3}.

Fig. S11 The ${ }^{13} \mathrm{C}$ NMR spectrum of 6 in CDCl_{3}.

Fig. $\mathbf{S 1 2}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of L 1 in CDCl_{3}.

Fig. S13 The ${ }^{13} \mathrm{C}$ NMR spectrum of L 1 in CDCl_{3}.

Fig. S14 The ${ }^{1} \mathrm{H}$ NMR spectrum of L 2 in CDCl_{3}.

Fig. S15 The ${ }^{13} \mathrm{C}$ NMR spectrum of L 2 in CDCl_{3}.

Fig. S16 The ${ }^{1} \mathrm{H}$ NMR spectrum of L 3 in CDCl_{3}.

Fig. S17 The ${ }^{13} \mathrm{C}$ NMR spectrum of L 3 in CDCl_{3}.

Fig. S18 The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Pt1}$ in CDCl_{3}.

Fig. S19 The ${ }^{13} \mathrm{C}$ NMR spectrum of Pt 1 in CDCl_{3}.

Fig. S20 The ${ }^{1} \mathrm{H}$ NMR spectrum of Pt 2 in CDCl_{3}.

Fig. S21 The ${ }^{13} \mathrm{C}$ NMR spectrum of Pt 2 in CDCl_{3}.

Fig. $\mathbf{S 2 2}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of Pt 3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S23 The ${ }^{13} \mathrm{C}$ NMR spectrum of Pt 3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

2.4 X-ray crystallographic data

Table S1. Crystal data and structure refinement of $\mathrm{Pt} 1, \mathrm{Pt} 2$ and Pt 3 .

CCDC	2089099	2078055	2078039
Empirical formula	$\mathrm{C}_{42} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{OPt}$	$\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OPt}$	$\mathrm{C}_{40} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OPt}$
Formula weight	795.77	706.65	756.70
Temperature/K	193.0	193.01	190.0
Crystal system	monoclinic	orthorhombic	orthorhombic
Space group	C2/c	Pbnb	$\mathrm{P} 22_{1} 2_{1}$
a / \AA	26.329(5)	14.3793(5)	$9.7121(5)$
b/Å	9.262(2)	15.8696(6)	13.4863(7)
c/ \AA	15.829(3)	22.7457(8)	21.4355(10)
$\alpha /{ }^{\circ}$	90.00(3)	90	90
$\beta /{ }^{\circ}$	108.70(3)	90	90
$\gamma /{ }^{\circ}$	90.00(3)	90	90
Volume/ \AA^{3}	3656.1(14)	5190.4(3)	2807.6(2)
Z	4	8	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.754	1.809	1.790
μ / mm^{-1}	6.949	7.136	6.841
F(000)	1896.0	N/A	1480.0
Radiation	$\operatorname{GaK} \alpha(\lambda=1.34139)$	$\operatorname{GaK} \alpha(\lambda=1.34139)$	$\operatorname{GaK} \alpha(\lambda=1.34139)$
2Θ range for data collection/ ${ }^{\circ}$	10.142 to 110.174	6.326 to 107.768	6.736 to 107.888
Index ranges	$\begin{gathered} -31 \leq \mathrm{h} \leq 32,-11 \leq \mathrm{k} \leq 11, \\ -19 \leq 1 \leq 19 \end{gathered}$	$\begin{aligned} & -17 \leq \mathrm{h} \leq 16,-17 \leq \mathrm{k} \leq 19, \\ & -27 \leq 1 \leq 27 \end{aligned}$	$\begin{gathered} -11 \leq \mathrm{h} \leq 11,-12 \leq \mathrm{k} \leq 16, \\ -24 \leq 1 \leq 25 \end{gathered}$
Reflections collected	13101	32148	18466
Independent reflections	$3465\left[\mathrm{R}_{\text {int }}=0.0583, \mathrm{R}_{\text {sigma }}=\right.$	4749 [$\mathrm{R}_{\text {int }}=0.0539, \mathrm{R}_{\text {sigma }}=$	$5088\left[\mathrm{R}_{\text {int }}=0.0566, \mathrm{R}_{\text {sigma }}=\right.$
	0.0445]	$0.0289]$	0.0496]
Data/restraints/parameters	3465/0/245	4749/0/370	5088/0/407
Goodness-of-fit on F^{2}	1.094	1.145	1.058
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0312, \mathrm{wR}_{2}=0.0813$	$\mathrm{R}_{1}=0.0369, \mathrm{wR}_{2}=0.0801$	$\mathrm{R}_{1}=0.0307, \mathrm{wR}_{2}=0.0706$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0324, \mathrm{wR}_{2}=0.0821$	$\mathrm{R}_{1}=0.0515, \mathrm{wR}_{2}=0.0843$	$\mathrm{R}_{1}=0.0322, \mathrm{wR}_{2}=0.0710$
Largest diff. peak/hole / e \AA^{-3}	1.01/-0.93	1.36/-0.96	1.12/-1.26
Flack parameter			0.074(17)

$R_{1}{ }^{\mathrm{a}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma F_{\mathrm{o}} \mid . \mathrm{wR}_{2}^{\mathrm{b}}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2 / \Sigma w}\left(F_{\mathrm{o}}^{2}\right)\right]^{1 / 2}$

Fig. S24 (a) Crystal packing of Pt1; (b) Crystal packing of Pt2; (c) Crystal packing of Pt3.

S3. Thermal stability

Fig. S25 The TGA curves of Pt1, Pt2 and Pt3.

S4. HPLC Data

HPLC Analysis Conditions: a) Column: Cat. No. EnantioPak®R-B, $5 \mu \mathrm{~m}$, $250 \times 4.6 \mathrm{~mm}$; b) Mobile phase: n-Hexane/Ethanol/dichloromethane $=80 / 10 / 10(\mathrm{v} / \mathrm{v} / \mathrm{v})$; c) Flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$; d) Abs. detector: 254 nm .

Fig. S26 HPLC profile of racemic Ptl.

Fig. S27 HPLC profile of racemic Pt2.

Fig. S28 HPLC profile of racemic Pt3.

S5. Photophysical measurement

Fig. S29 The lifetime curve of Pt 1 in doped film at room temperature.

Fig. S30 The lifetime curve of Pt2 in doped film at room temperature.

Fig. S31 The lifetime curve of Pt3 in doped film at room temperature.

Fig. S32 The quantum yield measurement of Pt 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at room temperature.

Fig. S33 The quantum yield measurement of Pt 1 in doped film at room temperature.

Fig. S34 The quantum yield measurement of Pt 2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at room temperature.

Fig. S35 The quantum yield measurement of Pt 2 in doped film at room temperature.

Fig. S36 The quantum yield measurement of Pt 3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at room temperature.

Fig. S37 The quantum yield measurement of Pt 3 in doped film at room temperature.

Fig. $\mathbf{S 3 8}$ (a) Normalized emission spectra in doped films and (b) emission spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 77 K of $\mathrm{Pt} 1, \mathrm{Pt} 2$ and Pt 3 .

S6. Electrochemical measurement and theoretical calculation

Fig. S39 (a) The cyclic voltammogram curve of Pt1; (b) Energy levels and electronic clouds distribution of Pt 1 .

Fig. S40 (a) The cyclic voltammogram curve of Pt2; (b) Energy levels and electronic clouds distribution of Pt2.

Fig. S41 (a) The cyclic voltammogram curve of Pt3; (b) Energy levels and electronic clouds distribution of Pt3.

S7. Device fabrication of D1-D3

Fig. S42 Device energy level diagrams and molecular structures of each layer.

S8. Reference device performance

Table S2. The reported devices performances of chiral $\mathrm{Pt}(\mathrm{II})$ complexes.
$L_{\text {max }}$

$\left(\mathrm{cd} / \mathrm{m}^{2}\right)$ | $\eta_{\mathrm{c}, \text { max }}$ |
| :---: |
| $(\mathrm{cd} / \mathrm{A})$ | | $\mathrm{EQE}_{\text {max }}$ |
| :---: |
| $(\%)$ | | $\left\|g_{\text {lum }}\right\|$ |
| :---: |
| $\left(\times 10^{-3}\right)$ | | $\left\|g_{\mathrm{EL}}\right\|$ |
| :---: |
| $\left(\times 10^{-3}\right)$ |\quad| Reference |
| :---: |

	-	-	-	0.3	-	Chem. Commun., $2017, \mathbf{5 3}$ 9210-9213.
	11590	22.5	18.8	3.7	5.1	$\begin{gathered} \text { Chem. Eur. J., } \\ 2019,25, \\ 5672-5676 . \end{gathered}$
	2110	23.3		-2.1	-2.2	
	-	-		-2.1	-1.8	J. Mater. Chem. C,
	-	-	0.87-0.93	-1.8	-1.9	$\begin{gathered} 2019,7, \\ 13743-13747 . \end{gathered}$
	-	-		-2.8	-2.7	
	2156	2.14	4.17	6.0	1.1	Front. Chem. 2020. 8501.
Nonor	7150	37.1	11.3	20	$\begin{gathered} 60 \\ \text { (after } \\ \text { annealing) } \end{gathered}$	Adv. Opt. Mater., 2020, 8, 2000775.
	1062	1.43	1.32	1.3	1.0	ACS Appl. Mater.
	3500	2.83	2.15	1.0	-	$\begin{gathered} \text { Interfaces, } \\ 2020,12, \\ 9520-9527 . \end{gathered}$

S9. Reference

1. A. Cappelli, M. Anzini, S. Vomero, L. Mennuni, F. Makovec, E. Doucet, M. Hamon, G. Bruni, M. R. Romeo, M. C. Menziani, P. G. De Benedetti and T. Langer, J Med. Chem., 1998, 41, 728-741.
