Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information

Suitability of alkyne donor- π - donor- π -donor scaffolds for electrofluorochromic and electrochromic use

Monika Wałęsa-Chorab,^{1,2*} Kacper Muras,² Heather L. Filiatrault,¹ and W.G. Skene^{1*}

¹Laboratoire de caractérisation photophysique des matériaux conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7

²Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznanskiego 8, 61-614 Poznań, Poland

Table of Contents

Figure S1. Normalized absorption spectra of 1	3
Figure S2. Normalized absorption spectra of 2.	3
Figure S3.Normalized absorption spectra of 3	3
Figure S4. Normalized absorption spectra of 4	4
Figure S5. Top: normalized emission spectra of 2	4
Figure S6. Top: normalized emission spectra of 4	5
Figure S7. Stokes shift of $1 (\blacksquare), 2 (\bullet), 3 (\blacktriangle)$, and $4 (\triangledown)$.	5
Figure S8. The spectroelectrochemistry of 1.	6
Figure S9. The spectroelectrochemistry of 2.	7
Figure S10.The spectroelectrochemistry of 3.	7
Figure S11. The spectroelectrochemistry of 4	8
Figure S12. The spectroelectrochemistry of 5	9
Figure S13. The spectroelectrochemistry of 5	. 10
Figure S14. The change in optical density of 1	. 10
Figure S15. Change in transmittance percent of electrochromic device of 1	. 11
Figure S16. Change in percent transmittance of 2.	. 11
Figure S17. Change in transmittance of spray coated 2.	. 12
Figure S18. Baseline corrected change in percent transmittance of spin coated 2	. 12
Figure S19. Baseline corrected change in percent transmittance of spin coated 2	. 13
Figure S20. Baseline corrected change in percent transmittance of spin coated 3	. 13
Figure S21. Baseline corrected change in percent transmittance of spin coated 4	. 14
Figure S22. AFM images for surface roughness analyses of 2	. 14
Figure S23. Photograph of electrochromic device of 2	. 16
Figure S24. Fluorescence change of 1	. 16
Figure S25. Fluorescence change of 2	. 17
Figure S26. Fluorescence change of 3	. 17
Figure S27. Fluorescence change of 4	. 18
Figure S28. Cyclic voltammogram of 5.	. 18
Figure S29. SOMO (left) and spin distribution (right)	. 19
Figure S30. ¹ H NMR of A in CDCl ₃	. 20
Figure S31. ¹³ C NMR spectra of A in CDCl ₃ .	. 21
Figure S32. ¹ H NMR spectra of B in CDCl ₃	. 22
Figure S33. ¹³ C NMR spectra of B in CDCl ₃	. 23
Figure S34. ¹ H NMR spectra of 1 in CDCl ₃ .	. 24
Figure S35. ¹³ C NMR spectra of 1 in CDCl ₃ .	. 25
Figure S36. ¹ H NMR spectra of 2 in CDCl ₃ .	. 26
Figure S37. ¹³ C NMR spectra of 2 in acetone-d ₆	. 27
Figure S38. ¹ H NMR spectra of 3 in CDCl ₃ .	. 28
Figure S39. ¹³ C NMR spectra of 3 in CDCl ₃ .	. 29
Figure S40. ¹ H NMR spectra of 4 in CDCl ₃ .	. 30
Figure S41. ¹³ C NMR spectra of 4 in CDCl ₃ .	. 31

Figure S1. Normalized absorption spectra of **1** measured in hexane (\blacktriangle), toluene (\triangleright), THF (\diamond), ethanol (\bullet), dichloromethane (\blacksquare), acetone (\bigtriangledown) and acetonitrile (\triangleleft).

Figure S2. Normalized absorption spectra of 2 measured in hexane (\checkmark), toluene (\blacklozenge), THF (\triangleleft), ethanol (\blacktriangle), dichloromethane (\bullet), acetone (\blacksquare) and acetonitrile (\triangleright).

Figure S3.Normalized absorption spectra of **3** measured in hexane (\bullet), toluene (\bullet), THF (\triangleright), ethanol (\blacktriangle), dichloromethane (\blacksquare), acetone (\bigtriangledown) and acetonitrile (\blacktriangleleft).

Figure S4. Normalized absorption spectra of 4 measured in hexane (\blacktriangle), toluene (\blacktriangleleft), THF (\blacklozenge), ethanol (\blacksquare), dichloromethane (\bullet), acetone (\bigtriangledown) and acetonitrile (\triangleright).

Figure S5. Top: normalized emission spectra of 2 measured in hexane (\checkmark), toluene (\blacksquare), THF (\triangleleft), ethanol (\blacktriangle), dichloromethane (\bullet), acetone (\triangleright) and acetonitrile (\bullet). Bottom: photograph showing the fluorescence of 2 in different solvents.

Figure S6. Top: normalized emission spectra of 4 measured in hexane (\blacksquare), toluene (\blacktriangleleft), THF (\blacklozenge), ethanol (\bullet), dichloromethane (\blacktriangle), acetone (\bigtriangledown) and acetonitrile (\triangleright). Bottom: photograph showing the fluorescence of 4 in different solvents.

Figure S7. Stokes shift of $1 (\bullet)$, $2 (\bullet)$, $3 (\blacktriangle)$, and $4 (\lor)$ as a function of solvent orientation polarizability (Δf) for various solvents.

Table S1. Linear regression fitting parameters for Stokes shift as a function of solvent orientation polarizability (Δf) for various solvents.

	Intercept		Slope		Statistics
Compound	Value	Standard	Value	Standard	Adj. R-
		Error		Error	Square
1	2311	367	8219	1690	0.791
2	2267	385	5764	1772	0.615
3	2332	467	10914	2153	0.805
4	2337	589	7635	2713	0.536

Table S2. Linear regression fitting parameters for Stokes shift as a function of $E_T(30)$.

	Intercept		Slope		Statistics
Compound	Value	Standard	Value	Standard	Adj. R-
		Error		Error	Square
1	-4975	1030	227	27	0.935
2	-3114	1364	167	35	0.812
3	-7493	787	306	20	0.979
4	-5474	1059	242	27	0.939

Figure S8. The spectroelectrochemistry of **1** in anhydrous and deaerated dichloromethane with TBAPF6 (0.1 M) as an electrolyte with applied potential $0 (\bullet)$, 700 (\blacktriangle), 800 (\blacksquare), 900 (\blacktriangledown) and 1000 (\bigstar) mV followed by -500 (\blacklozenge) mV held for 30 sec per potential. Inset: photographs of honeycomb electrode of the original (left) and the electrochemically oxidized (right) **1** by applying a potential of 1000 mV for 1 min.

Figure S9. The spectroelectrochemistry of **2** in anhydrous and deaerated dichloromethane with TBAPF₆ (0.1 M) as an electrolyte with applied potentials of 0 (\bullet), 800 (\checkmark), 900 (\bullet), and 1000 (\blacksquare) mV followed by -500 (\triangleleft) mV held for 30 sec per potential. Insert: photographs of original (left) and electrochemically oxidized (right) **2** by applying a potential of 1000 mV for 1 min.

Figure S10.The spectroelectrochemistry of **3** in anhydrous and deaerated dichloromethane with TBAPF₆ (0.1 M) as an electrolyte with applied potentials of 0 (\blacksquare), 700 (\bullet), 800 (\blacktriangle), 900 (\checkmark), and 1000 (\bullet) mV followed by -500 (\triangleleft) mV held for 30 sec per potential. Insert: photographs of original (left) and electrochemically oxidized (right) **3** by applying a potential of 1000 mV for 1 min.

Figure S11. The spectroelectrochemistry of **4** in anhydrous and deaerated dichloromethane with TBAPF₆ (0.1 M) as an electrolyte with applied potentials of 0 (\blacksquare), 800 (\checkmark), 900 (\diamond), and 1000 (\triangleright) mV followed by -500 (\bullet) mV held for 30 sec per potential. Insert: photographs of original (left) and electrochemically oxidized (right) **4** by applying a potential of 1000 mV for 1 min.

Figure S12. The spectroelectrochemistry of **5** in anhydrous and deaerated dichloromethane with TBAPF₆ (0.1 M) as an electrolyte with applied potential: A) 0 (\bullet), 1200 (\blacktriangle), 1300 (\blacksquare), and 1400 (\bigtriangledown) mV; B) -300 (\bullet), -400 (\blacktriangle), -500 (\blacksquare) -600 (\blacktriangledown), and -700 (\star) mV held for 30 sec per potential. Inset: photographs of the honeycomb electrode of **5** A) original (left) and electrochemically oxidized (right) by applying a potential of 1400 mV for 1 min.; B) potential of -300 mV (left) and -700 mV applied for 1 min.

Figure S13. The spectroelectrochemistry of **5** in anhydrous and deaerated dichloromethane with 0.1 M TBAPF₆ as an electrolyte with applied potential 0 (\bullet), -100 (\blacktriangle), -200 (\Box) and - 300 (∇) mV. Insert: photographs of original (left) and electrochemically reduced (right) **5** by applying a potential of -300 mV for 1 min.

Figure S14. The change in optical density of **1** monitored at 730 nm as a function of charge density at +2.6 V.

Figure S15. Baseline corrected change in percent transmittance of the electrochromic device prepared from **1** monitored at 730 nm with applied potential of 2.5 and -1.5 V switched at 20 s intervals during 8 hours of continuous operation. Inset: zoom of the first five switching cycles of applied potential.

Figure S16. Change in percent transmittance of 2 monitored at 700 nm in an electrochromic device that was fabricated by spin coating and sealed under inert atmosphere and operating continuously for 15 hr. Inset: photographs of the neutral (left) and oxidized (middle) of electrochromic device and zoom of initial first hour of device operation (right).

Figure S17. Change in transmittance of spray coated 2 (0.5 mg/mL) in an operating electrochromic device monitored at 700 nm when switching between applied potentials of 2.75 and -0.75 V at 30 s cycling speed.

Figure S18. Baseline corrected change in percent transmittance of spin coated 2 on ITO coated glass in an operating electrochromic device monitored at 700 nm at different times of applied potential of 2.5 and -0.5 V.

Figure S19. Baseline corrected change in percent transmittance of spin coated 2 on ITO coated PET in an operating electrochromic device monitored at 700 nm with different times of applied potential of 2.5 and -0.5 V.

Figure S20. Baseline corrected change in percent transmittance of spin coated 3 in an electrochromic device monitored at 711 nm when switching the applied potential between 3 and -1 V at 30 s intervals.

Figure S21. Baseline corrected change in percent transmittance of spin coated 4 (10 mg/mL) in an electrochromic device monitored at 700 nm when switching the applied potential of +2.9 and -1 V at 30 s intervals.

Figure S22. AFM images for surface roughness analyses of 2 spin coated (left) and spray coated (right) on ITO coated glass.

Sample	Avg RMS Roughness 3 μm x 3 μm	Avg RMS Roughness 15 μm x 15 μm	RMS Roughness 50 μm x 50 μm
2 Spin coated	$0.7 \pm 0.2 \text{ nm}$	$0.7 \pm 0.2 \text{ nm}$	2.2 nm
2 Spray coated	6.0 ± 4.5	$15.1 \pm 9.6 \text{ nm}$	26.1 nm
1 Spin coated	$0.7 \pm 0.1 \text{ nm}$	$1.4 \pm 0.8 \text{ nm}$	6.3 nm

Table S3. RMS roughness of spin and spray coated films of **1** and **2**.

Table S4. Average thickness by profilometry of spray coated alkyne layer in an electrochromic device.

Molecule	Average Thickness (nm)	
1	71 ± 12	
2	67 ± 19	
3	67 ± 20	
4	58 ± 19	

Figure S23. Photograph of electrochromic device of **2** on ITO/PET curved around a beaker (radius=7 cm) with an applied potential of +2.5 V.

Figure S24. Fluorescence change of **1** in anhydrous and deaerated solution of dichloromethane with TBAPF₆ (0.1 M) when excited at 390 nm with applied potentials of 0 (\bullet), 800 (\blacktriangle), 900 (\blacksquare), 1000 (\bigtriangledown) and 1100 (\star) mV followed by -100 (\blacklozenge) mV held for 30 sec per potential. Inset: photographs of the honeycomb electrode of the original (left) and electrochemically oxidized (right) **1** by applying a potential of 1000 mV for 1 min when irradiated with the handheld UV lamp (365 nm).

Figure S25. Fluorescence change of **2** in anhydrous and deaerated dichloromethane with TBAPF₆ (0.1 M) as an electrolyte when excited at 390 nm with applied potentials of 0 (\blacklozenge), 700 (\blacklozenge), 800 (\blacktriangle), 900 (\checkmark), 1000 (\blacktriangledown), and 1100 (\blacksquare) mV followed by -100 (\triangleright) mV held for 30 sec per potential.

Figure S26. Fluorescence change of **3** in anhydrous and deaerated dichloromethane with TBAPF₆ (0.1 M) as an electrolyte when excited at 400 nm with applied potentials f 0 (\blacklozenge), 700 (\blacksquare), 800 (\bullet), 900 (\blacktriangle), and 1000 (\bigtriangledown) mV followed by -100 (\blacktriangleleft) mV held for 30 sec per potential.

Figure S27. Fluorescence change of **4** in anhydrous and deaerated dichloromethane with TBAPF₆ (0.1 M) as an electrolyte when excited at 405 nm with applied potentials of 0 (\blacklozenge), 700 (\blacklozenge), 800 (\blacktriangle), 900 (\checkmark), 1000 (\blacktriangleleft), and 1100 (\blacksquare) mV followed by -500 (\triangleright) mV held for 30 sec per potential.

Figure S28. Cyclic voltammogram of 5 measured in DCM with $TBAPF_6$ (0.1 M) at 100 mV/sec.

Figure S29. SOMO (left) and spin distribution (right) of the radical cation of **1** (A-B) and **2** (E-F) along with the bis(radical cation) of **1** (C-D) and **2** (G-H) calculated by B3LYP DFT with the 6-311+g(d,p) basis set.

Figure S30.¹H NMR of \mathbf{A} in CDCl₃.

Figure S31. ¹³C NMR spectra of **A** in CDCl₃.

Figure S32.¹H NMR spectra of **B** in CDCl₃.

Figure S33. ¹³C NMR spectra of **B** in CDCl₃.

Figure S34. ¹H NMR spectra of **1** in CDCl₃.

Figure S35. ¹³C NMR spectra of **1** in CDCl₃.

Figure S36. ¹H NMR spectra of **2** in CDCl₃.

Figure S37. ¹³C NMR spectra of **2** in acetone-d₆.

Figure S38. ¹H NMR spectra of **3** in CDCl₃.

Figure S39. ¹³C NMR spectra of **3** in CDCl₃.

Figure S40. ¹H NMR spectra of **4** in CDCl₃.

Figure S41. ¹³C NMR spectra of **4** in CDCl₃.