Multi-Stimuli-Responsive Composite Fibers Based on Luminescent

Ceramics for UV/Heat Detection and Anti-counterfeiting

Xiuyu Shen^a, Qian Hu^b, Abdolhamid Akbarzadeh^{c,d}, Chen Shi^a, Zengyuan Pang^a, Mingqiao Ge^{a,*}

^aCollege Textile Science and engineering, Jiangnan University, Wuxi 214122, China

^bSchool of Food Science and Technology, Jiangnan University, Wuxi 214122, China

^eDepartment of Bioresource Engineering, McGill University, Montreal, PQ H9X 3V9, Canada

^dDepartment of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada

*Address correspondence to Mingqiao Ge, Email: ge_mingqiao@126.com, Tel: +86-510-85912329,

Fax: +86-510-85912329

1. The optimization of Y₂O₂S:Eu³⁺, Mg²⁺, Ti⁴⁺

Fig. S1 The (a) excitation spectra, (b) emission spectra and (c) afterglow decay curves of Y₂O₂S:Eu³⁺, Mg²⁺, Ti⁴⁺ phosphors with different Eu³⁺ co-doping concentrations. As shown in Fig S1 (a) and (b), all emission and excitation spectra of Y₂O₂S:Eu³⁺,

 Mg^{2+} , Ti^{4+} phosphors with different Eu^{3+} co-doping concentrations present similar pattern. The main excitation peak of samples is in the range of 300-350 nm, which is ascribed to the O²⁻-Eu³⁺ CTB (charge transfer band) and S²⁻(3p)-Eu³⁺ CTB respectively, the narrow peaks appear at 396 nm, 468 nm and 540 nm are due to the f-f CT of Eu³⁺. As shown in Fig 1 (b), the strong red-emission peaks locating at 626nm and 616 nm are due to the transition from ⁵Do -⁷F₂ of Eu³⁺ while some weaker and narrower peaks are ascribed to the ⁵DJ (J¹/40, 1, 2)-⁷FJ (J¹/40, 1, 2, 3, 4) of Eu³⁺ ion. It is obvious that the luminescent intensity of Y₂O₂S:Eu³⁺0.04, Mg²⁺0.05, Ti⁴⁺0.05 is the strongest. Furthermore, the afterglow decay curves of samples under the UV-radiation for 15 min also prove that the persistent luminescent property of Y₂O₂S:Eu³⁺0.04, Mg²⁺0.05, Ti⁴⁺0.05, Ti⁴⁺0.05 is brilliant, although the initial intensity is slightly weaker than Y₂O₂S:Eu³⁺0.06, Mg²⁺0.05, Ti⁴⁺0.05. Considering the luminescent intensity and the persistent luminescent property, the Y₂O₂S:Eu³⁺0.04, Mg²⁺0.05, Ti⁴⁺0.05 can be applied in multi-stimuli-responsive fibers.

2. SEM images of 5% and 7% multi-stimuli-responsive fibers

Fig. S2 SEM images of (a) surface, (b) section of 5% multi-stimuli-responsive fibers; (c) surface, (d) section of 7% multi-stimuli-responsive fibers.

3. Sectional elemental distribution maps of 3% multi-stimuli-responsive fibers.

Fig. S3 Sectional elemental distribution maps of 3% multi-stimuli-responsive fibers.

4. PL properties of 3% and 5% multi-stimuli-responsive fibers

Fig. S4 (a) Excitation spectra (λ_{em} =627nm) and (b) emission spectra (λ_{ex} =330nm) of 5% multi-stimuli-responsive fibers at 20°C and 40°C; (c) color distribution of 5% multi-stimuli-responsive fibers at different temperature in CIE 1931. (d) Excitation spectra (λ_{em} =627nm) and (e) emission spectra (λ_{ex} =330nm) of 3% multi-stimuli-responsive fibers at 20°C and 40°C; (f) color distribution of 3% multi-stimuli-responsive fibers at different temperature in CIE 1931.