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Fig. S1 Optical images of 3D-printed mold (a) with plasma etching and (b) without plasma etching
after removing the magnetic elastomer. The optical images of magnetic elastomer obtained at (¢) high

temperature solidification and (d) low temperature solidification.

Fig. S2 (a) SEM image of magnetic microparticles and (b) corresponding magnified image of (a).



J Magnetization

Insulated enclosure

Magnetizing coil

Current direction Magnetic elastomer ~ Magnetic direction

Fig. S3 (a-b) The magnetization process of magnetic elastomer.

Fig. S4 Digital photograph of (a) commercial carbon cloths. (b) Optical microscope image and (c)

corresponding magnified image of (b). Digital photograph of (d) magnetic elastomer.
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Fig. S5 (a) Digital pictures of magnetic elastomers. (b) The pressure vs strain hysteretic curve of (rea)
carbon cloth and (blue) magnetic elastomers. (¢) The magnetic stability of magnetic elastomer after

placing on air for three months.
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Fig. S6 (a) The resistance value change of the C-METS in the process of compression and recovery.

(b) and (c¢) Corresponding magnified image of (a).
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Fig. S7 (a) Instant respond of C-METS under the condition of compression frequency of ca. 2 Hz.

(b) Electrical response of C-METS in different dynamic pressure.



Magnetization

Insulated enclosure

Magnetizing coil

Current direction Magnetic direction
Magnetic elastomer

Magnetic field direction 3
b C:
21
Compression > OW
. E p
Recovery -2
3

0 10 20 30 40 50
Time (s)

Compression

Voltage (uV) (D

Recovery

10 20 30 40 50 60
Time (s)

Fig. S8 (a) The magnetic elastomer is magnetized to obtain a vertical magnetic field. (b) and (d) are
the schematic model for the carbon wrapping the magnetic elastomer with different magnetic field
directions, respectively. (c¢) and (e) is the corresponding output voltage of (b) and (d) under the same

test condition, respectively.
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Fig. S9 The relation of different magnetic content of magnetic elastomers on their magnetic strength.
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Fig. S10 The pressure vs strain curves of magnetic elastomer with different magnetic content.
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Fig. S11 (a-b, g-h, m-n and s-t) The optical image, (c-d, i-j, o-p and u-v) two-dimensional magnetic
field distribution and (e-f, k-1, g-r and w-x) corresponding magnetic field intensity of different inner
diameter of magnetic elastomer, when the compression distance is 12 mm and the compression speed

is 800 mm min-!.
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Fig. S12 Resistance value of carbon cloths with different thickness.
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Fig. S13 The (a) voltage ang (b) current signal of C-METS at different compression frequency.
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Fig. S14 (a) C-METS sensor was assembled by using two magnetic elastomers together with the
opposite magnetic direction. (b) The corresponding output voltage of (a) at a compression distance
of 12 mm. (¢) C-METS sensor was assembled by using two magnetic elastomers together with the

same magnetic direction. (d) The corresponding output voltage of (¢) at a compression distance of 12

mm.
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Fig. S15 Digital images of carbon cloths (a) before and (b) after soaking in 2 mol L-! nitric acid
solution for 6 hours. (c) The resistance value of carbon cloths corresponding to (a) and (b). Digital
images of carbon cloths (d) before and (e) after soaking in 2 mol L-! KOH solution for 24 hours. (f)

The resistance value of copper sheets corresponding to (d) and (e).
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Fig. S16 Digital images of magnetic elastomer (a) before and (b) after soaking in 2 mol L-! nitric acid
for 6 hours. (c) The corresponding magnetic strength of (a) and (b). Digital images of magnetic
elastomer (d) before and (e) after soaking in 2 mol L' KOH solution for 24 hours. (f) The

corresponding magnetic strength of (d) and (e).
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Fig. S17 Digital images of copper sheets (a) before and (b) after soaking in 2 mol L-! nitric acid
solution for 6 hours. (c) The resistance value of copper sheets corresponding to (a) and (b). Digital
images of copper sheets (d) before and (e) after soaking in 2 mol L-! KOH solution for 24 hours. (f)

The resistance value of copper sheets corresponding to (d) and (e).
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Fig. S18 (a) Magnetic strength dependence of magnetic elastomer with different environment

temperature.
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Fig. S19 The magnetization process of magnetoactive elastomer.
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Fig. S20 Soft robot moves on the ground (a-c) and in the alkaline solution (d-f).
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Fig. S21 The voltage signals when a worm crawled forward and hit the (a) back and (b) front of soft

robot, respectively.

Fig. S22 The optical pictures of soft robot when a person stepping from the left side to the right side

of the robot.
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Fig. S23 The voltage signals when a person stepped from the front to the back of the robot, which

could be attributed to four parts: stepping on the front (1), stepping on the back (2), leaving the front

(3) and leaving the back of the soft robot (4), respectively.



Table S1. The change of total magnetic flux for C-METS with inner diameter of 18 mm before/after

compression at compression distance of 12 mm.

Total magnetic

Total magnetic The change of ~ Output voltage  Output voltage

. flux i . .
flux in initial comu)r(elsr;e d total magnetic calculated by obtained by
state (106 Wb) (Xpl 06wy X C10°Wb)  simulation experiment
38.9 40.7 1.8 2.0 uwv 22 v

Table S2. The change of total magnetic flux for C-METS with different inner diameter at

compression distance of 12 mm and the compression speed of 800 mm min-!.

Total ti
Total magnetic © aﬂlrlr:(aigrfle 1 The change of  Output voltage

Inner diameter flux in initial total magnetic calculated by

state (X106 Wb) Sta‘izr?flrgfigb) flux (<106 Wb)  simulation
9 mm 26.5 30.1 3.5 3.6 uV
12 mm 30.8 33.6 2.8 3.2 1V
15 mm 38.9 37.1 22 2.6 UV
18 mm 38.9 40.7 1.8 2.0 uV

21 mm 42.8 44 .4 1.6 1.7 pv




