Supplementary Information

Insights into Molecular Packing Effect on the Emission Properties of

Fluorenone-based Molecules in the Aggregate State

Peigen Yao, Yixuan Wang, Weiguo Qiao, Xianglang Sun, Haiyan Peng, Xiaolin Xie, Zhong'an Li*

Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. E-mail: lizha@hust.edu.cn

Instrumentations

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured using Bruker 400 and 600 MHz instrument spectrometers. High-resolution mass spectrometry was performed on a Bruker Daltonics instrument, SolariX 7.0T. Thermogravimetric analysis was performed on a NETZSCH STA 449 F3 Jupiter under nitrogen atmosphere with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The single crystal data was collected on the Rigaku Saturn diffractometer with CCD area detector. All calculations were performed using the SHELXL97 and crystal structure crystallographic software packages. UV-vis-NIR absorption spectra were recorded on a PerkinElmer LAMBDA 750 spectrophotometer. Photoluminescence spectra were recorded on an OmniFluo-960 fluorophotometer and a SHIMADZU RF-5301PC Spectrofluorophotometer. Absolute fluorescence quantum yield, photoluminescence lifetimes, radiative and nonradiative decay rates were measured by FLS1000 Photoluminescence Spectrometer. Powder X-ray diffraction was performed on a Rigaku SmartLab SE.

Materials

Toluene was dried with sodium and distilled under argon atmosphere. Most of reagents
were purchased from Adamas (Titan Scientific, Shanghai) and used without further purification, except $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (Fluorochem), $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{3}$ (Energy Chemical, Shanghai). Compound 1, 4 and 27-DPA were synthesized according to previous literatures. ${ }^{1-3}$

Synthesis of 36-DPA

A mixture of 3,6-dibromo-9-fluorenone (1, $0.50 \mathrm{~g}, 1.48 \mathrm{mmol}$), di-p-tolylamine (2, 0.73 $\mathrm{g}, 3.70 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.07 \mathrm{~g}, 0.07 \mathrm{mmol}), \mathrm{t}-\mathrm{BuONa}(0.20 \mathrm{~g}, 2.07 \mathrm{mmol}), \mathrm{P}(\mathrm{t}-\mathrm{Bu})_{3}(1.00$ $\mathrm{mL}, 0.60 \mathrm{mmol})$ and dry toluene $(20 \mathrm{~mL})$ were added to a 100 mL Schlenk tube and then heated to reflux under argon overnight. After cooling to room temperature, the mixture was extracted with dichloromethane (DCM) three times. The combined organic layer was dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. The crude product was first purified through column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/DCM, 1/1, V/V), followed by recrystallization from DCM and methanol to afford 36-DPA ($0.52 \mathrm{~g}, 62.4 \%$) as bright orange solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 7.45$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $8 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $190.92,153.63,145.24,144.24,134.16,130.21,127.93,125.68,125.02,120.15,112.37,20.91$. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{ON}_{2}$, 571.27; found, 571.2729.

Synthesis of 27-TPA

A mixture of 2,7-dibromo-9-fluorenone (3, $0.20 \mathrm{~g}, 0.59 \mathrm{mmol}$), compound $4(0.59 \mathrm{~g}, 1.48$
$\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.03 \mathrm{~g}, 0.03 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.25 \mathrm{~g}, 1.78 \mathrm{mmol})$, degassed THF (5 mL) and degassed $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added to a 50 mL Schlenk tube and then then refluxed under argon overnight. After cooling to room temperature, the mixture was extracted with DCM for three times. The combined organic layer was dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. The crude product was first purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/DCM, 3/1, V/V), followed by recrystallization from DCM and methanol to afford 27-TPA (0.34 g , 79.6%) as dark red solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 7.90$ (s, 2H), 7.71 (d, $J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{t}, J=8.8 \mathrm{~Hz}, 12 \mathrm{H}), 7.06(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 8 \mathrm{H}), 2.36(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.12, 148.20, 145.02, 142.49, $141.58,135.23,132.94,132.45,132.40,130.00,127.25,124.94,122.32,122.25,120.60,20.87$. HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{53} \mathrm{H}_{43} \mathrm{ON}_{2}, 723.33$; found, 723.3351.

Synthesis of 36-TPA

Following the same procedures as $\mathbf{2 7 - T P A}$ and using 3,6-dibromo-9-fluorenone as the starting material afforded 36-TPA as orange powder ($0.28 \mathrm{~g}, 65.6 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 7.77$ (d, $J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ (d, $J=6.5 \mathrm{~Hz}, 4 \mathrm{H})$, $7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 12 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 8 \mathrm{H}), 2.36(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 193.12, 148.73, 147.26, 144.93, 144.87, 133.18, 133.02, 132.50, 130.04, 127.78, 127.55, 127.04, 125.08, 124.86, 124.66, 121.93, 118.31, 20.89. HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{53} \mathrm{H}_{43} \mathrm{ON}_{2}, 723.33$; found, 723.3352 .

Table S1. UV-Vis absorption and emission maxima of fluorenone-based molecules in different solvents ($10^{-5} \mathrm{M}$).

solvent		27-DPA	36-DPA	27-TPA	36-TPA
	$\lambda_{\text {abs }}(\mathrm{nm})$	379,541	$333,387,451$	376,466	411
	$\lambda_{\text {em }}(\mathrm{nm})$	638	510,536	546,578	486,512
toluene	$\lambda_{\text {abs }}(\mathrm{nm})$	384,559	$339,394,465$	378,478	425
	$\lambda_{\text {em }}(\mathrm{nm})$	-	562	590	546
	$\lambda_{\text {abs }}(\mathrm{nm})$	381,569	$334,397,469$	376,479	424
	$\lambda_{\text {em }}(\mathrm{nm})$	-	572	616	614
EA	$\lambda_{\text {abs }}(\mathrm{nm})$	378,559	$333,388,464$	376,475	411
	$\lambda_{\text {em }}(\mathrm{nm})$	-	572	618	610
DCM	$\lambda_{\text {abs }}(\mathrm{nm})$	382,570	$337,395,479$	377,487	437
	$\lambda_{\text {em }}(\mathrm{nm})$	-	614	-	-
DMSO	$\lambda_{\text {abs }}(\mathrm{nm})$	381,586	$338,387,482$	381,491	443
	$\lambda_{\text {em }}(\mathrm{nm})$	-	-	-	-

$\lambda_{\text {abs }}:$ maximum absorption wavelength. $\lambda_{\text {em }}$: maximum emission wavelength. Excitation wavelength: 380 nm for 27-DPA; 340 nm for 36-DPA; 376 nm for 27-TPA; 398 nm for 36-TPA.

Table S2. Photoluminescence lifetimes, radiative and nonradiative decay rates of fluorenonebased molecules.

compounds	$\tau_{\text {agg }{ }^{a} \text {. }(\mathrm{ns})}$	$k_{\mathrm{r}, \text { agg }}{ }^{b}\left(10^{7} \mathrm{~s}^{-1}\right)$	$k_{\mathrm{nr}, \text { agg }^{c}\left(10^{8} \mathrm{~s}^{-1}\right)} \tau_{\text {solid }}{ }^{d}(\mathrm{~ns})$	$k_{\mathrm{r}, \text { solid }}{ }^{e}\left(10^{7} \mathrm{~s}^{-1}\right)$	$k_{\mathrm{nr}, \text { solid }}{ }^{f}\left(10^{8} \mathrm{~s}^{-1}\right)$	
27-DPA	$-g$	-	-	$-g$	-	-
36-DPA	4.68	4.71	1.66	8.28	5.82	0.63
27-TPA	1.90	1.95	5.07	1.84	4.45	4.99
36-TPA	8.83	1.44	0.99	5.1	3.57	1.60

${ }^{a}$ Photoluminescence lifetime measured in $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$ mixed solvents (aggregated states). ${ }^{b}$ Radiative decay rate of aggregated state. ${ }^{c}$ Nonradiative decay rate of aggregated state. ${ }^{d}$ Photoluminescence lifetime of solid powders. ${ }^{e}$ Radiative decay rate of solid powders. ${ }^{f}$ Nonradiative decay rate of solid powders. ${ }^{g}$ Data of 27-DPA was unable to be collected because of its quenched fluorescence. Excitation wavelength: 375 nm for solution and 450 nm for powders. Note that due to the quenched emission, the data for all molecules in DMSO solutions was also not obtained.

Table S3. Crystal data and structure refinement for 27-DPA.

Identification code	$27-\mathrm{DPA}$
Empirical formula	C 41 H 34 N 2 O
Formula weight	570.70
Temperature/K	$100.00(10)$
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$11.0273(2)$
b / \AA	$11.8821(3)$
c / \AA	$13.1597(2)$
$\alpha /{ }^{\circ}$	$78.351(2)$
$\beta /{ }^{\circ}$	$89.587(2)$
$\gamma /{ }^{\circ}$	$65.611(2)$
Volume $/ \AA 3$	$1532.45(6)$
Z	2
$\rho_{\text {calc }}$ /cm3	1.237
$\mu / \mathrm{mm}-1$	0.569
$\mathrm{~F}(000)$	604.0
Crystal size/mm3	$0.25 \times 0.2 \times 0.1$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	6.884 to 147.674
Index ranges	$-13 \leq \mathrm{h} \leq 13,-14 \leq \mathrm{k} \leq 14,-16 \leq 1 \leq 16$
Reflections collected	35471
Independent reflections	$6047[\mathrm{Rint}=0.0312, \mathrm{Rsigma}=0.0171]$
Data/restraints/parameters	$6047 / 0 / 402$
Goodness-of-fit on F2	1.054
Final R indexes [I>=2 σ (I) $]$	$\mathrm{R} 1=0.0375, \mathrm{wR} 2=0.0973$
Final R indexes [all data]	$\mathrm{R} 1=0.0389, \mathrm{wR} 2=0.0983$
Largest diff. peak/hole $/ \mathrm{e} \AA-3$	$0.27 /-0.19$

Table S4. Crystal data and structure refinement for 36-DPA.

Identification code	$36-\mathrm{DPA}$
Empirical formula	C 86 H 76 N 4 O 3
Formula weight	1213.50
Temperature/K	$100.01(10)$
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$9.08710(10)$
b / \AA	$17.4149(2)$
c / \AA	$22.2469(2)$
$\alpha /{ }^{\circ}$	$70.5830(10)$
$\beta /{ }^{\circ}$	$82.2510(10)$
$\gamma /{ }^{\circ}$	$85.9270(10)$
Volume/ $\AA 3$	$3288.74(6)$
Z	2
$\rho c a l c g / \mathrm{cm} 3$	1.225
$\mu / \mathrm{mm}-1$	0.571
$\mathrm{~F}(000)$	1288.0
Crystal size/mm3	$0.35 \times 0.2 \times 0.05$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	4.242 to 147.936
Index ranges	$-11 \leq \mathrm{h} \leq 11,-21 \leq \mathrm{k} \leq 20,-23 \leq 1 \leq 27$
Reflections collected	42535
Independent reflections	$12931[\mathrm{Rint}=0.0626, \mathrm{Rsigma}=0.0512]$
Data/restraints/parameters	$12931 / 0 / 847$
Goodness-of-fit on F2	1.072
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0493, \mathrm{wR} 2=0.1368$
Final R indexes $[$ all data	$\mathrm{R} 1=0.0549, \mathrm{wR} 2=0.1409$
Largest diff. peak/hole $/ \mathrm{e} \AA-3$	$0.32 /-0.29$

Table S5. Crystal data and structure refinement for 36-TPA O-crystal.

Identification code	36-TPA O-crystal
Empirical formula	C61H58N2O3
Formula weight	867.09
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a / \AA ¢	9.0514(2)
b/Å	15.5876(5)
c/Å	17.7580(6)
$\alpha /{ }^{\circ}$	69.435(3)
$\beta /{ }^{\circ}$	88.203(2)
$\gamma /{ }^{\circ}$	83.972(2)
Volume/Å3	2332.80(13)
Z	2
¢calcg/cm3	1.234
$\mu / \mathrm{mm}-1$	0.581
F(000)	924.0
Crystal size/mm3	$0.5 \times 0.1 \times 0.03$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	5.316 to 147.974
Index ranges	$-11 \leq \mathrm{h} \leq 11,-17 \leq \mathrm{k} \leq 18,-22 \leq 1 \leq 22$
Reflections collected	55501
Independent reflections	9207 [Rint $=0.0710$, Rsigma $=0.0438$]
Data/restraints/parameters	9207/0/599
Goodness-of-fit on F2	1.051
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0576, \mathrm{wR} 2=0.1478$
Final R indexes [all data]	$\mathrm{R} 1=0.0668, \mathrm{wR} 2=0.1540$
Largest diff. peak/hole / e \AA - 3	0.61/-0.44

Table S6. Crystal data and structure refinement for 36-TPA R-crystal.

Identification code	$36-\mathrm{TPA}$ R-crystal
Empirical formula	C 54 H 43 Cl 3 N 2 O
Formula weight	842.25
Temperature/K	$100.01(10)$
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$10.16790(10)$
b / \AA	$13.54080(10)$
c / \AA	$17.3270(2)$
$\alpha /{ }^{\circ}$	$71.2180(10)$
$\beta /{ }^{\circ}$	$85.7300(10)$
$\gamma /{ }^{\circ}$	$86.0060(10)$
Volume/ $\AA 3$	$2249.67(4)$
Z	2
$\rho c a l c g /$ cm3	1.243
$\mu /$ mm-	2.156
$\mathrm{~F}(000)$	880.0
Crystal size/mm3	$0.3 \times 0.2 \times 0.05$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	5.396 to 147.782
Index ranges	$-11 \leq \mathrm{h} \leq 12,-16 \leq \mathrm{k} \leq 16,-21 \leq 1 \leq 21$
Reflections collected	54466
Independent reflections	$8900[\mathrm{Rint}=0.0414, \mathrm{Rsigma}=0.0261]$
Data/restraints/parameters	$8900 / 0 / 545$
Goodness-of-fit on F2	1.074
Final R indexes [I>=2 σ (I) $]$	$\mathrm{R} 1=0.0515, \mathrm{wR} 2=0.1520$
Final R indexes [all data]	$\mathrm{R} 1=0.0556, \mathrm{wR} 2=0.1558$
Largest diff. peak/hole $/ \mathrm{e} \AA-3$	$0.58 /-0.90$

Figure S1. TGA curves of fluorenone-based molecules.

Figure S2. UV-Vis absorption spectra in different solvents $\left(10^{-5} \mathrm{M}\right)$ of (a) 27-DPA, (b) 36DPA, (c) 27-TPA and (d) 36-TPA.

Figure S3. PL spectra of fluorenone-based molecules in powder state excited at 470 nm .

Figure S4. Photographs of single-crystals of 27-DPA and 36-DPA (left: under ambient light; right: under 365 nm UV excitation).

Figure S5. Single crystal structure of 27-DPA: (a) Conformation with dihedral angles noted; (b) Molecular packing viewed along a-axis; (c) Anti-parallel molecular packing with center to center distances ($d_{\mathrm{c}-\mathrm{c}} \mathrm{s}$) between the adjacent fluorenones noted. The nitrogen atoms are marked in purple, oxygen atoms in red, carbon atoms in grey and hydrogen atoms in light blue.
(a)

Conformer 2
(b)

Figure S6. Single crystal structure of 36-DPA: (a) Two conformation isomers with dihedral angles noted; (b) Extended dimeric packing between two isomers (c) Molecular packing viewed along $\mathrm{a}-\mathrm{axis}$ with H -bonding distances noted. The nitrogen atoms are marked in purple, oxygen atoms in red, carbon atoms in grey and hydrogen atoms in light blue.

Figure S7. Dimeric packing made in one unit cell of O-crystal (left) and R-crystal (right) of 36-TPA viewed along b-axis and a-axis, respectively. The nitrogen atoms are marked in purple, oxygen atoms in red and carbon atoms in grey.

Figure S8. Three-dimensional molecular packing network found in the O-crystal of 36-TPA, with three packing modes noted. The nitrogen atoms are marked in purple, oxygen atoms in red, carbon atoms in grey and hydrogen atoms in light blue.

Figure S9. Three-dimensional molecular packing network found in the R-crystal of 36-TPA, with three packing modes noted. The nitrogen atoms are marked in purple, oxygen atoms in red, carbon atoms in grey and hydrogen atoms in light blue.

Figure S10. Emission spectra (a) and XRD patterns (b) of pristine and ground 36-DPA powders.

Figure $\mathbf{S 7}{ }^{1}{ }^{1} \mathrm{H}$ NMR spectrum of 27-DPA.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 6}$-DPA.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 7 - T P A}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 6 - T P A}$.

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum of 27-DPA.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of 36-DPA.

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum of 27-TPA.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 6 - T P A}$.

Figure S15. HR-Mass spectrum of 27-DPA.

Figure S16. HR-Mass spectrum of 36-DPA.

Figure S17. HR-Mass spectrum of 27-TPA.

Figure S18. HR-Mass spectrum of 36-TPA.

References

1. Z. Li, M. Siklos, N. Pucher, K. Cicha, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, G. Gescheidt, J. Stampfl and R. Liska, J. Polym. Sci.Part A: Polym. Chem., 2011, 49, 36883699.
2. R. Anémian, D. C. Cupertino, P. R. Mackie and S. G. Yeates, Tetra. Lett., 2005, 46, 67176721.
3. X. Sun, Q. Xue, Z. Zhu, Q. Xiao, K. Jiang, H.-L. Yip, H. Yan and Z. a. Li, Chem. Sci., 2018, 9, 2698-2704.
