Supplementary Information for Chlorine-Mediated Atomic Layer Deposition of HfO₂ on Graphene

Peter M. Wilson,¹ Matt L. Chin,¹ Chinedu E. Ekuma,^{2,3} Sina Najmaei,¹ Katherine M. Price,¹ Theanne Schiros,^{5,6} Madan Dubey,¹ James Hone⁴

¹ Sensors and Electron Devices Directorate, United States Army Research Laboratory, Adelphi, MD, USA

² Department of Physics, Lehigh University, Bethlehem, PA, 18015 USA

³ Institute for Functional Materials and Devices, Lehigh University, Bethlehem, PA, 18015 USA

⁴Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States

⁵ Materials Science and Engineering Center, Columbia University, New York, NY 10023

⁶ Department of Science and Mathematics, Fashion Institute of Technology, New York, NY 10001

Figure S1: Raman spectra of chlorinated bare SiO₂ (a) and chlorinated graphene (b)

Figure S2: Schematic demonstrating the image thresholding algorithm to calculate coverage of ALD hafnia on graphene

Figure S3:Correlation of the normalized CI peak intensity (normalized to G peak) and the CI:C ratio obtained from XPS.

Figure S4: XPS spectrum of Cl-2p region after ALD of 2 nm of Hafnia.

Figure S5: Evolution of Chlorine content over time at different temperatures.

Figure S6: Ids of the top gated device plotted against the leakage current of the device showing that the leakage current is 3 orders of magnitude lower than the Ids.