Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Highly Sensitive Mechano-Optical Strain Sensor Based on 2D Material for Human Gaits Quality Monitoring and High End Robotic Applications

Haris Khan^a, Afaque Manzoor Soomro^{b, *}, Abdul Samad^a, Irfanullah^a, Muhammad Waqas^{a,*}, Hina Ashraf^c,

Saeed Ahmed Khan^a, Kyung Hyun Choi^b

^aDepartment of Electrical Engineering, Sukkur IBA University, Pakistan, ^bDepartment of Mechatronics Engineering, Jeju National University, Republic of Korea, ^cDepartment of Ocean Science Engineering, Jeju National University, Republic of Korea

*Correspondence and request for materials should be addressed to Muhammad Waqas & Afaque Manzoor Soomro (Email addresses: <u>mwaqas@iba-suk.edu.pk; afaquemanzoor@gmail.com</u>)

Fig. S1 (a) Design of casing for molding and casting of composite film (b) Design of LED-

LDR assembly package.

Fig. S2 Real-time images showing the: **(a)** 3D printing of casing for molding and casting of Ecoflex/MoS₂ composite film **(b)** 3D design of LED-LDR assembly package.

Fig. S3 Real-time images showing the flexibility of 3D printed casing for molding and casting of $Ecoflex/MoS_2$ composite film.

Fig. S4 Real-time images showing the casting of $Ecoflex/MoS_2$ composite film.

Fig. S5 Real-time images showing the manual stretching capability of $Ecoflex/MoS_2$ composite film.

Fig. S6 Real-time images depicting the fabrication of a single sensor package based on $Ecoflex/MoS_2$ composite film and LED-LDR arrangements.

Fig. S7 (a, b) PCB design of hardware circuity, (c, d) Printed PCB boards, and (e, f) real-time images of complete hardware circuitry for the acquisition of sensor data and remote monitoring.

Fig. S8 Sensor response under uniaxial stretching at the rate of 1 Hz.

Fig. S9 Sensor's response when the LED is placed at different focus areas (25%, 50%, and

100%)

Fig. S10 (a) Shows the 3D drawing of the case with 25% focus area covered and its setup, (b) with 100% focus area, and (c) 50% focus area.

Fig. S11 Optical transmittance of the pristine Ecoflex and Ecoflex/MoS₂ when light intensity in the range of $12.5 - 52 \text{ mW/cm}^2$ was used.

Fig. S12 microscopic images of the prepared membrane under different magnification levels (5X, 10X, 20X, and 40X).

Sensing Material	Matrix Material	Sensing Range	Strain Frequenc	DH (%)	GF	Cycles	COD	Techniq	Ref.
iviater lai	Material	Kange	y					ut	
GO-doped PU@PEDOT c	PU	550%			10.1	10000		Piezo Type	1
GaInSn	PDMS	50%				20	Almost linear	Liquid type	2
CNT	PDMS	300%			6.6	10000	0.9999	Piezo Type	3
NaCl-Ecoflex	Ecoflex	50%		21.34%			~0.999	Liquid type	4
Carbon grease solution	Ecoflex	100%		9.04%	3.8	1000	Non-linear	Liquid type	5
multi-walled CNTs	PDMS	60%			1.16	255	Non-linear	Piezo Type	6
KI-Gly	Ecoflex	50%	2 Hz	5.3%	2.2	4000	Almost linear	Liquid type	7
Ethylene glycol/NaCl	Ecoflex	250%		6.52%	<4	3000	~0.989	Liquid type	8
PEDOT: PSS	PDMS	30%		~9%	12,000			Liquid type	9
Graphene/ Glycerine	Ecoflex	1000%			45	10,000	Almost linear	Liquid type	10
CNTs	Ecoflex	100%		1.8%	30		0.98	Piezo Type	11
rGO/DI	Ecoflex	400%		31.6%			Almost linear	Liquid type	12
KCL-Gly	Ecoflex	100%	5 Hz	4.23%	2.7	8000	~0.99	Piezo Type	13
PEDOT:PSS/M WCNT	Ecoflex	150%	10 Hz	1.56%	89.4	1000	0.99	Liquid type	14
MOS ₂	Ecoflex	150%	5 Hz	0.43%	8.6	1000	0.998	Optical Type	This work

Table S1 Comparison of performance parameters of the proposed device with reported devices

- K. Qi, J. He, H. Wang, Y. Zhou, X. You, N. Nan, W. Shao, L. Wang, B. Ding and S. Cui, ACS Appl. Mater. Interfaces, 2017, 9, 42951–42960.
- 2 A. Nakamura, T. Hamanishi, S. Kawakami and M. Takeda, *Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.*, 2017, **219**, 20–27.
- L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang, Q. Gao, D. Zhao, X. Zhang, M. Tu, F.
 Yang, W. Zhou, Q. Fan, J. Luo, W. Zhou, P. M. Ajayan and S. Xie, *Sci. Rep.*, 2013, 3, 1–9.
- 4 J. Z. Gul, M. Sajid and K. H. Choi, J. Mater. Chem. C, DOI:10.1039/c8tc03423k.
- 5 J. Luan, Q. Wang, X. Zheng, Y. Li and N. Wang, .
- R. Iglio, S. Mariani, V. Robbiano, L. Strambini and G. Barillaro, ACS Appl. Mater.
 Interfaces, 2018, 10, 13877–13885.
- S. Xu, D. M. Vogt, W. H. Hsu, J. Osborne, T. Walsh, J. R. Foster, S. K. Sullivan, V. C.
 Smith, A. W. Rousing, E. C. Goldfield and R. J. Wood, *Adv. Funct. Mater.*, 2019, 29, 1–14.
- Y. Huang, Y. Zhao, W. Pan, Y. Zhang, X. Guo, L. Mao, P. Liu and L. Gao, *Smart Mater. Struct.*, 2017, 26, 95017.
- 9 S. Zhu, J. H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi and M. D. Dickey, *Adv. Funct. Mater.*, 2013, 23, 2308–2314.
- 10 M. Xu, J. Qi, F. Li and Y. Zhang, *Nanoscale*, 2018, **10**, 5264–5271.
- J. W. Lee, A. M. Soomro, M. Waqas, M. A. U. Khalid and K. H. Choi, *Int. J. Energy Res.*, 2020, 44, 7035–7046.

- 12 X. Shi, C. H. Cheng, Y. Zheng and P. K. A. Wai, *J. Micromechanics Microengineering*, DOI:10.1088/0960-1317/26/10/105020.
- G. Hassan, J. Bae, A. Hassan, S. Ali, C. H. Lee and Y. Choi, *Compos. Part A Appl. Sci. Manuf.*, 2018, **107**, 519–528.
- F. Jabbar, A. M. Soomro, J. Lee, M. Ali, Y. S. Kim, S. Lee and K. H. Choi, 2020, 32, 1–17.