Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Improving the Efficiency and Stability of Inorganic Red Perovskite Light Emitting Diodes by Traces of Zinc Ions

Xiao-Yi Cai,^{†1} Yi Yu,^{†2} Yong-Chun Ye,¹ Yang Shen,¹ Ming-Lei Guo,¹ Jing-Kun Wang,¹ Kong-Chao Shen,¹ Yan-Qing Li,^{2,*} Jian-Xin Tang^{1,3*}

¹ Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China, E-mail: jxtang@suda.edu.cn (J.X. Tang)

² School of Physics and Electronic Science, Ministry of Education Nanophotonics and Advanced Instrument Engineering Research Center, East China Normal University, Shanghai 200062, China, E-mail: yqli@phy.ecnu.edu.cn (Y.Q. Li)

³ Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China

[†] These authors contributed equally to this work.

Figure S1. SEM images of the prepared $CsPbI_{3-x}Br_x$ films by adding different amounts of ZnI_2 into the precursor solution. (a) 0.0%, (b) 0.5%, (c) 1.0%, and (d) 1.5% molar ratio of Zn/Pb.

Figure S2. AFM images of the prepared perovskite films. Tapping-mode AFM images of the pristine CsPbI_{3-x}Br_x film (a)(b). The film RMS roughness is about 1.17 nm, the scan area is 3 μ m × 3 μ m. Tapping-mode AFM images of the CsPbI_{3-x}Br_x thin film incorporating with ZnI₂ (c)(d). The film RMS roughness is about 1.10 nm, the scan area is 3 μ m × 3 μ m.

Figure S3. (a) XPS spectra of pristine and ZnI_2 -passivated CsPbI_{3-x}Br_x films. XPS analysis of pristine and ZnI₂-passivated films for (b) Zn 2p, (c) Pb 4f and (d) I 3d.

Figure S4. SEM image and corresponding elemental mapping images of pristine $CsPbI_{3-x}Br_x$ perovskite thin film. Scale bar: 1 μ m.

Figure S5. SEM image and corresponding elemental mapping images of passivated $CsPbI_{3-x}Br_x$ perovskite thin film. Scale bar: 1 µm.

Figure S6. Stability regions of various compounds against Cs and Pb chemical potentials in CsPbI₂Br. The region indicates the available equilibrium chemical potential region for CsPbI₂Br. Three representative points (A: Br-rich/I-poor, B: moderate, C: I-rich/Br-poor conditions) are selected for the formation energy calculations.

Figure S7. UPS spectra of the pristine $CsPbI_{3-x}Br_x$ and ZnI_2 -passivated $CsPbI_{3-x}Br_x$ films. Their W_Fs are -4.51 eV and -4.56 eV, respectively. Their HOMOs are -5.71 eV and -5.64 eV, respectively.

Figure S8. PL spectra (a) and TRPL spectra (b) of pristine and ZnI_2 -passivated CsPbI_{3-x}Br films with different molar ratio of Zn/Pb on PEDOT:PSS films.

Figure S9. Comparison of the perovskite crystallinity. XRD patterns of the CsPbI₃₋ $_x$ Br_x films with and without ZnI₂ passivation.

Figure S10. (a) J-V-L curves, (b) EQE versus current density curves, (c) EL spectra and (d) CE versus luminance of $CsPbI_{3-x}Br_x$ PeLEDs with different molar ratio of Zn/Pb.

Figure S11. CIE coordinates of the ZnI_2 -passivated CsPbI_{3-x}Br_x PeLEDs under different bias voltages. Inset is CIE color coordinates under an applied voltage of 3.6 V.

Figure S12. EL spectra of the ZnI_2 -passivated CsPbI_{3-x}Br_x based PeLEDs at the bias voltages from 2.8 V to 5.6 V. Inset is a photograph of red emission PeLED operating under 5.4 V forward bias.

Figure S13. Temperature-dependent PL spectra of (a) pristine and (b) passivated $CsPbI_{3-x}Br_x$.

Figure S14. (a) Time-dependent EL spectrum and (b) time-dependent TRPL of passivated device. (testing every two minutes)

Perovskite	τ_1	τ_2	τ_3	τ_{ave}
	[ns]	[ns]	[ns]	[ns]
0.0 % (Pristine)	4.83	30.15	146.27	75.81
0.5%	5.19	33.34	168.70	96.82
1.0%	5.27	33.98	167.48	100.92
1.5%	4.10	26.48	142.02	94.51

Table S1. Fitting parameters of the PL decay lifetime for the pristine $CsPbI_{3-x}Br_x$ and ZnI_2 -passivated $CsPbI_{3-x}Br_x$ films with different molar ratio of Zn/Pb.

Devices	V _{on}	EL peak	L _{max}	EQE _{max}	CE _{max}	T ₅₀ *
	[V]	[nm]	[cd m ⁻²]	[%]	[cd A ⁻¹]	[h]
Pristine	2.75	666	2020	6.94	1.46	2269.0
ZnI ₂ -passivated	2.70	666	4258	9.93	2.66	2667.0

Table S2. Device performances of red emission PeLEDs based on ZnI_2 -passivatedCsPbI $_{3-x}Br_x$ perovskite films.

* The initial luminance is 100 cd m $^{-2}$.

Table S3. Calculated formation energies (in eV) for defects in Zn doped $CsPbI_2Br$ atthe three selected points A, B and C in Figure S6.

	Α	В	С
Cs substitution	0.84	3.060814	5.279681
Pb substitution	4.30	2.09	-0.12

Table S4. The summarization of the performances of all-inorganic red emission PeLEDs with perovskite NCs or perovskite films emitters (the peak wavelength is from 630 nm to 700 nm).

Perovskite	Device Structure	Device Performance Parameters R				Ref.	
Material		EL	EQE	L_{max}	η_{CE}	V_{on}	
		(nm)	(%)	(cd m ⁻²)	(cd A ⁻¹)	(V)	
CsPb(Br/I) ₃ NCs	ITO/ZnO-PEI /Perovskite	648	6.20	0016	6.42	10	(4)
	NCs/CBP/TCTA/MoO _x /Au		6.30	2216		1.9	(1)
NMA _a Cs (Ph. Ia)	ITO/ ZnO/ PEIE/Perovskite/	689	3.7	440	-	2.0	(2)
NIVIA205n-1FDnI3n+1	TFB/MoO _x /Au						
	ITO/NiO/TFB/PVK/Perovskite/TP	683	7.3	~100	-	~3.2	(3)
	Bi/Ca/Al						
	ITO/ZnO/PEI/Perovskite/	695	1.12	101	-	4.7	(4)
	Poly-TPD/WO ₃ /Al						
CsPbl ₃ NCs	ITO/PEDOT:PSS/Poly-TPD/	688	5.02	7/8		11	(5)
(IDA-treated)	Perovskite NCs/TPBi/LiF/Al	000	5.02	740	-	4.1	(5)
CsPb(Br/I) ₃ NCs	ITO/PEDOT:PSS/Poly-TPD/	645	14.1	794	11.6	2.7	(6)
	Perovskite NCs/TPBi/Liq/Al	653	21.3	500	10.6	2.8	(0)
	ITO/PEDOT:PSS/Poly-TPD/	637	3 55	2671	2.97	3.6	(7)
031 5(517)3 1003	Perovskite NCs/TPBi/Liq/Al		0.00				
BA2Cs _{n-1} Pb _n I _{3n+1} /	ITO/PEDOT:PSS/Poly-TPD/	680	6.02	1202	1 71	~2.6	(8)
PEO	Perovskite/BCP/LiF/AI	000	0.20	1092	1.7 1	2.0	(0)
NMA _a Cs (Ph. Ia)	ITO/ ZnO/ PEIE/	694	7.3	732	0.36	1.9	(9)
	Perovskite/TFB/MoO _x /Au						
PEOXA/CsPbBr _{0.6} I	ITO/ZnMgO/Perovskite/	668	6 55	.55 338	1.36	1.5	(10)
2.4	Poly-TPD/MoO ₃ /Ag	000	0.00				
Ag-doped CsPbl ₃	Ag/PEDOT:PSS/Perovskite	600	11.2	1106	_	25	(11)
NCs	NCs/TCTA/MoO ₃ /Au	030	11.2	1100	-	2.0	(11)
PBA Cs Ph la r	ITO/PEDOT:PSS/Poly-TPD/	664	13.3	968	-	2.6	(12)
	PVK/Perovskite/TPBi/LiF/Al	004					
$CsPb_{0.64}Zn_{0.36}I_{3}$	ITO/ZnO/ PEI/Perovskite	668	15.1	2202	-	2.0	(13)
NCs	NCs/TCTA/MoO ₃ /Au	000					
NEA/α-CsPbl ₃	ITO/PEDOT:PSS/PVK/	682	8.65	210	-	2.8	(14)
	Perovskite/TPBi/LiF/Al						
CsPb(Br _{0.43} I _{0.57}) ₃	ITO/PTAA/PEDOT:PSS/	664	0.8	2765	0.84	2.5	(15)
	Perovskite/TPBi/LiF/Al	004					
4-F-PMAI/	ITO/Poly-TPD/Perovskite/	689	18.6	~60	_	~3.0	(16)
CsPbl _{2.8} Br _{0.2}	TPBi/LiF/AI		10.0	J -00	-		

References:

[1] Zhang, X.; Sun, C.; Zhang, Y.; Wu, H.; Ji, C.; Chuai, Y.; Wang, P.; Wen, S.; Zhang, C.; Yu, W. W., Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. *J. Phys. Chem. Lett.* **2016**, *7*, 4602–4610.

[2] Zhang, S.; Yi, C.; Wang, N.; Sun, Y.; Zou, W.; Wei, Y.; Cao, Y.; Miao, Y.; Li, R.;
Yin, Y.; Zhao, N.; Wang, J.; Huang, W., Efficient Red Perovskite Light-Emitting
Diodes Based on Solution-Processed Multiple Quantum Wells. *Adv. Mater.* 2017, 29, 1606600.

[3] Si, J.; Liu, Y.; He, Z.; Du, H.; Du, K.; Chen, D.; Li, J.; Xu, M.; Tian, H.; He, H.; Di, D.; Lin, C.; Cheng, Y.; Wang, J.; Jin, Y., Efficient and High-Color-Purity Light-Emitting Diodes Based on In Situ Grown Films of CsPbX₃ (X = Br, I) Nanoplates with Controlled Thicknesses. *ACS Nano* **2017**, *11*, 11100–11107.

[4] Jeong, B.; Han, H.; Choi, Y. J.; Cho, S. H.; Kim, E. H.; Lee, S. W.; Kim, J. S.; Park, C.; Kim, D.; Park, C., All-Inorganic CsPbI₃ Perovskite Phase-Stabilized by Poly (ethylene oxide) for Red-Light-Emitting Diodes. *Adv. Funct. Mater.* **2018**, *28*, 1706401.

[5] Pan, J.; Shang, Y.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H.; Mohammed, O. F.; Ning, Z.; Bakr, O. M., Bidentate Ligand-Passivated CsPbI₃ Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. *J. Am. Chem. Soc.* 2018, *140*, 562–565.

[6] Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y.-J.; Ohisa, S.; Kido, J., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. *Nat. Photonics* **2018**, *12*, 681–687.

[7] Yang, J. N.; Song, Y.; Yao, J. S.; Wang, K. H.; Wang, J. J.; Zhu, B. S.; Yao, M. M.; Rahman, S. U.; Lan, Y. F.; Fan, F. J.; Yao, H. B., Potassium Bromide Surface Passivation on CsPbI_{3-x}Br_x Nanocrystals for Efficient and Stable Pure Red Perovskite

Light-Emitting Diodes. J. Am. Chem. Soc. 2020, 142, 2956-2967.

[8] Tian, Y.; Zhou, C.; Worku, M.; Wang, X.; Ling, Y.; Gao, H.; Zhou, Y.; Miao, Y.; Guan, J.; Ma, B., Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes. *Adv. Mater.* 2018, *30*, 1707093.

[9] Chang, J.; Zhang, S.; Wang, N.; Sun, Y.; Wei, Y.; Li, R.; Yi, C.; Wang, J.; Huang,
W., Enhanced Performance of Red Perovskite Light-Emitting Diodes through the
Dimensional Tailoring of Perovskite Multiple Quantum Wells. J. Phys. Chem. Lett.
2018, 9, 881–886.

[10] Cai, W.; Chen, Z.; Li, Z.; Yan, L.; Zhang, D.; Liu, L.; Xu, Q. H.; Ma, Y.; Huang,
F.; Yip, H. L.; Cao, Y., Polymer-Assisted In Situ Growth of All-Inorganic Perovskite
Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. ACS
Appl. Mater. Interfaces 2018, 10, 42564–42572.

[11] Lu, M.; Zhang, X.; Bai, X.; Wu, H.; Shen, X.; Zhang, Y.; Zhang, W.; Zheng, W.; Song, H.; Yu, W. W.; Rogach, A. L., Spontaneous Silver Doping and Surface Passivation of CsPbI₃ Perovskite Active Layer Enable Light-Emitting Devices with an External Quantum Efficiency of 11.2. *ACS Energy Lett.* **2018**, *3*, 1571–1577.

[12] He, Z.; Liu, Y.; Yang, Z.; Li, J.; Cui, J.; Chen, D.; Fang, Z.; He, H.; Ye, Z.; Zhu,
H.; Wang, N.; Wang, J.; Jin, Y., High-Efficiency Red Light-Emitting Diodes Based
on Multiple Quantum Wells of Phenylbutylammonium-Cesium Lead Iodide
Perovskites. ACS Photonics 2019, 6, 587–594.

[13] Shen, X.; Zhang, Y.; Kershaw, S. V.; Li, T.; Wang, C.; Zhang, X.; Wang, W.; Li,
D.; Wang, Y.; Lu, M.; Zhang, L.; Sun, C.; Zhao, D.; Qin, G.; Bai, X.; Yu, W. W.;
Rogach, A. L., Zn-Alloyed CsPbI₃ Nanocrystals for Highly Efficient Perovskite
Light-Emitting Devices. Nano Lett. 2019, 19, 1552–1559.

[14] Han, B.; Cai, B.; Shan, Q.; Song, J.; Li, J.; Zhang, F.; Chen, J.; Fang, T.; Ji, Q.; Xu, X.; Zeng, H., Stable, Efficient Red Perovskite Light-Emitting Diodes by (α, δ) -CsPbI₃ Phase Engineering. *Adv. Funct. Mater.* **2018**, *28*, 1804285.

[15] Guo, S.; Liu, Y. F.; Liu, Y. S.; Feng, J.; Sun, H. B., Improved performance of pure red perovskite light-emitting devices based on $CsPb(Br_{1-x}I_x)_3$ with variable content of iodine and bromine. *Opt Lett.* **2020**, *45*, 2724–2727.

[16] Cheng, G.; Liu, Y.; Chen, T.; Chen, W.; Fang, Z.; Zhang, J.; Ding, L.; Li, X.; Shi, T.; Xiao, Z., Efficient All-Inorganic Perovskite Light-Emitting Diodes with Improved Operation Stability. *ACS Appl. Mater. Interfaces* 2020, *12*, 18084–18090.