Facile Template-free Preparation of Silvercoated Cu₃SbS₄ Hollow Spheres with Enhanced Photoelectric Properties

Xiang Meng^a, Xihao Chen^{a, b}, Jiang Cheng^a, Fuqiang Zhai^a, Wen Li^c, Rui Hu^d, Lu Li^{a,}

^aSchool of Material Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China.

^bDepartment of Physics, Chongqing University, Chongqing, 400044, China ^cInterdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji Univ., 4800 Caoan Rd., Shanghai 201804, China ^dKey Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031. China

Figure S1. XRD patterns of the as-synthesized (a) $Cu_{12}Sb_4S_{13}$, (b) Cu_3SbS_3 and (c) $CuSbS_2$ by solvothermal method along with the standard reference pattern as #24-1318, #31-0450 and #44-1417, respectively, SEM images of (a') $Cu_{12}Sb_4S_{13}$, (b') Cu_3SbS_3 and (c') $CuSbS_2$. High-purity Cu-Sb-S phases were formed and distinguishing morphology (including configuration and size) could be recognized from SEM images.

Figure S2. XPS spectra of the as-synthesized $Cu_{12}Sb_4S_{13}$ nanocrystals including the survey spectrum along with the corresponding high-resolution XPS spectra for Cu 2p, Sb 3d and S 2p core levels.

Calculation of Ag content:

The relative content of Ag and Cu_3SbS_4 in the composites can be calculated by the K value method, and the formula is described as follows¹:

$I_A/I_S = k \times W_A/W_S$

Where I is the diffraction peak intensity, W is the weight percentage, and k is a constant value. The k value could be obtained from the standard PDF card. Both 0.5 vol% Ag and 1 vol% Ag content in the composites could be roughly estimated from XRD patterns.

Figure S3. EDS result for the elemental mapping image along with the relative chemical composition of the as-synthesized Ag-coated Cu_3SbS_4 nanocrystals hollow spheres.

Figure S4. XPS spectra of the as-synthesized Ag-coated Cu_3SbS_4 nanocrystals hollow spheres including the survey spectrum along with the corresponding high-resolution XPS spectra for Cu 2p, Sb 3d, Ag 2d and S 2p core levels. A relatively small satellite peak at 530.6 eV appeared, which means a very little reduction of Sb⁵⁺ into Sb³⁺ by sodium borohydride. The change has not been mentioned in the main body due to a relatively small change.

Figure S5. (a) UV-Vis-NIR spectra of Ag nanoparticles, Cu_3SbS_4 powder by melting method, Cu_3SbS_4 nanocrystals hollow spheres, 0.5 vol % Ag-coated Cu_3SbS_4 and 1 vol % Ag-coated Cu_3SbS_4 , the corresponding Tauc plot of $(\alpha hv)^{1/2}$ versus (hv) of the as-synthesized (b) Cu_3SbS_4 nanocrystals hollow spheres and (c) Ag-coated ones.

Given the absorption spectrum of Ag clusters, the Ag nanoparticles with sphere structure possessed a broad peak at 400 nm for surface plasmon resonance². The broad peaks located around 320 nm and 900 nm attributed to the in-plane dipole plasmon and out-of-plane quadrupole resonances, respectively, which suggested the formation of Ag with triangular nanoprism structure³. This could be possibly aroused from geometry of Cu_3SbS_4 nanoparticles precursor.

Calculation of optical band gap:

The optical bandgap of the film is determined from the absorption coefficient using

$$\alpha^m = A(h\nu - E_g) \tag{1}$$

where A is a constant, m is the transition probability, E_g is the optical band gap⁴. The value of n could be 1/2 or 2 for allowed indirect or direct transitions, respectively. From the experimental results and theoretical calculations for band structure, n = 1/2 for Cu₃SbS₄ with an indirect transition was chosen^{5–8}. The bandgap of samples is determined from the plot of $(\alpha \cdot hv)^2$ versus photon energy by extrapolating to $\alpha \cdot hv = 0$.

Figure S6. XRD pattern of the as-synthesized bulk Cu_3SbS_4 by melting method, a small quantity of $Cu_{12}Sb_4S_{13}$ was detected. Polycrystalline sample of Cu_3SbS_4 was synthesized by the stoichiometric amount of high purity elements (>99.99%) at 1173K for 24h, cooled down to 673K and held on for 2d. The obtained ingots were hand-ground into fine powder for hot pressing at 673 K for 20 min under a uniaxial pressure of 80 MPa.

Figure S7. SEM images of the smaller spherical aggregation of crystals by only 5 min duration

time at high temperature

Table	S1.	The	representative	preparation	method,	structural	properties	and	optical	band	gap
(indirect) of Cu ₃ SbS ₄											

Method	Size of crystals (nm)	Shape of crystals	Form	valence state	Optical band gap (eV)	Application	Ref.
Solvothermal method	200	-	Powder		1	-	9
Solvothermal method	26-32	sphere	Powder		0.88-1	-	10
Solvothermal method	20	-	Film (SC)		0.82	-	11
hydrothermal	40-60 in thickness	nanofibers	Powder		-	-	12
Hot-injection	$10.2{\pm}1.1$	spherical	Powder	132	0.9	-	6
Hot-injection	10	spherical	Powder	132	1	-	13
Hot-injection	10.5±1.7	spherical	Powder		1.72	-	14
Hot-injection	23±4	oblates	Powder		1.2	-	5
Hot-injection	61±19	irregular to tetragonal	Powder	132	1.33	-	15
	5.95±0.67		Powder		1.5		7
Hot-injection	4.81±0.52	dots			1.6	-	
	3.37±0.46	_			1.7	-	
Hot-injection	4.72±0.52	Quasi- spherical	Powder		1.4	For optoelectronic devices	16
Hot-injection	14-20	-	Film (spray deposited method using chlorobenze ne)		0.89	Hole transporting material in solar cells	17
Hot-injection	21.5±8.0	Round-like	Powder		≥1	-	8
Hot-injection	19	-	Film (SC)	152	0.9	Absorber layer in TFSC	18
Microwave radiation	30-50	sphere-like	Powder	152	1.1	-	19
Mechanical alloying with spark plasma sintering	≥1000	-	Powder	152	0.85	Thermoelectric materials	20
Deep eutectic solvents synthetic approach	~7	nearly spherical	-	152	1.23	Water-splitting	21
RF magnetron sputtering with Sulfurization	≥1000	-	Film		0.89±0.01	-	22
Electron-beam evaporation with Sulfurization	≥1000	-	Film		0.88	-	23
Magnetron	50±30	-	Film		0.94-0.97	For TFSC	24

sputter with Sulfurization

Where, TFSC is the abbreviation for thin film solar cells, SC is the abbreviation for spin-coating, ≥ 1000 means that the size of crystals was calculated roughly by us from SEM results in these papers and close to micrometer. The form is the state of Cu₃SbS₄ when the UV-Vis measurement was conducted. Three numbers in valence state column are corresponding to valence states of element Cu, Sb and S in Cu₃SbS₄, respectively.

Reference:

- 1 C. R. Hubbard and R. L. Snyder, Powder Diffr., 1988, 3, 74-77.
- 2 H. Bi, W. Cai, L. Zhang, D. Martin and F. Träger, Appl. Phys. Lett., 2002, 81, 5222-5224.
- 3 J. Liu, X. Li and X. Zeng, J. Alloys Compd., 2010, 494, 84-87.
- 4 E. A. Davis and N. F. Mott, Philos. Mag., 1970, 22, 0903-0922.
- 5 K. Ramasamy, H. Sims, W. H. Butler and A. Gupta, Chem. Mater., 2014, 26, 2891–2899.
- 6 J. van Embden and Y. Tachibana, J. Mater. Chem., 2012, 22, 11466.
- 7 K. Chen, J. Zhou, W. Chen, Q. Chen, P. Zhou and Y. Liu, Nanoscale, 2016, 8, 5146–5152.
- 8 F. Baum, T. Pretto, A. G. Brolo and M. J. L. Santos, Cryst. Growth Des., 2018, 18, 6521–6527.
- 9 L. Shi, C. Wu, J. Li and J. Ding, J. Alloys Compd., 2017, 694, 132–135.
- 10 J. Bincy, G. S. G. and L. R. A., Mater. Res. Bull., 2017, 95, 267-276.
- 11 M. Bella, C. Rivero, S. Blayac, H. Basti, M. C. Record and P. Boulet, *Mater. Res. Bull.*, 2017, 90, 188–194.
- 12 C. An, Y. Jin, K. Tang and Y. Qian, J. Mater. Chem., 2003, 13, 301-303.
- 13 J. van Embden, K. Latham, N. W. Duffy and Y. Tachibana, J. Am. Chem. Soc., 2013, 135, 11562–11571.
- 14 S. Ikeda, S. Sogawa, Y. Tokai, W. Septina, T. Harada and M. Matsumura, *RSC Adv*, 2014, **4**, 40969–40972.
- 15 Q. Liang, K. Huang, X. Ren, W. Zhang, R. Xie and S. Feng, *CrystEngComm*, 2016, 18, 3703– 3710.
- 16 F. Zhang, K. Chen, X. Jiang, Y. Wang, Y. Ge, L. Wu, S. Xu, Q. Bao and H. Zhang, J. Mater. Chem. C, 2018, 6, 8977–8983.
- 17 Q. Zeng, Y. Di, C. Huang, K. Sun, Y. Zhao, H. Xie, D. Niu, L. Jiang, X. Hao, Y. Lai and F. Liu, J. Mater. Chem. C, 2018, 6, 7989–7993.
- 18 G. H. Albuquerque, K.-J. Kim, J. I. Lopez, A. Devaraj, S. Manandhar, Y.-S. Liu, J. Guo, C.-H. Chang and G. S. Herman, J. Mater. Chem. A, 2018, 6, 8682–8692.
- 19 G. Chen, W. Wang, J. Zhao, W. Yang, S. Chen, Z. Huang, R. Jian and H. Ruan, J. Alloys Compd., 2016, 679, 218–224.
- 20 M. Shen, S. Lu, Z. Zhang, H. Liu, W. Shen, C. Fang, Q. Wang, L. Chen, Y. Zhang and X. Jia, ACS Appl. Mater. Interfaces, 2020, 12, 8271–8279.
- 21 U. V. Ghorpade, M. P. Suryawanshi, S. W. Shin, X. Wang, E. Jo, H. Bae, K. Park, J.-S. Ha, S. S. Kolekar and J. H. Kim, *J. Mater. Chem. A*, 2018, **6**, 19798–19809.
- 22 P. A. Fernandes, A. Shongalova, A. F. da Cunha, J. P. Teixeira, J. P. Leitão, J. M. V. Cunha, S. Bose, P. M. P. Salomé and M. R. Correia, *J. Alloys Compd.*, 2019, **797**, 1359–1366.
- 23 L. Yu, R. S. Kokenyesi, D. A. Keszler and A. Zunger, Adv. Energy Mater., 2013, 3, 43-48.
- 24 N. D. Franzer, N. R. Paudel, C. Xiao and Y. Yan, in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), IEEE, Denver, CO, USA, 2014, pp. 2326–2328.