Supporting Information

Metallosupramolecular polymer deposited via inkjet printing for fast-switching pixelated electrochromic devices

Li-Juan Xu, Bing Li, Guo-Lin Gao*, Zaixing Jiang*

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. of China.

*Corresponding author: gaoguol@hit.edu.cn; jiangzaixing@hit.edu.cn.

Figure S1. Contact angel of Fe(II)-MEPE polymer inks with (a) water (b) ethanol as solvent on ITO-coated PET substrate (the insets were the typical photograph of the printed film).

Figure S2. (a) The side view images of Fe(II)-MEPE polymer droplet with water as solvent during drying process on the ITO-coated PET substrate. (b) The top view images of 2 μ L Fe(II)-MEPE polymer droplets with water, ethanol, ethylene glycol, and water/ethanol/ethylene glycol (volume ratio of 100:50:10) as solvent from I to IV (top) and the top view images of dried Fe(II)-MEPE droplets (middle). The top view images of sub-microliter Fe(II)-MEPE droplets deposited (bottom).

Figure S3. (a) The viscosity of Fe(II)-MEPE inks (with a fixed concentrate of 1 mg mL⁻¹) with different content ethylene glycol relative to water. (b) The surface tension of Fe(II)-MEPE inks with different content ethanol relative to volent of water.

Figure S4. (a) A microscope image of the surface morphology of the inkjet-printed Fe(II)-MEPE film at a magnification of 4 × 16 (inset presents an image at a magnification of 10 × 16); (b) The SEM image of the boundary part of the inkjet-printed Fe(II)-MEPE polymer film (the inset was the optical microscope image).

Figure S5. Electrochromic switching behavior of electrochromic films with different printed layers of Fe(II)-MEPE polymer monitored at 584 nm at a voltage of 0 V for 4 s and +1.4 V for 4 s for cycles.

Figure S6. Transient transmittance profile at 584 nm during continuous coloration/bleaching switching 5000 cycles of the printed Fe(II)-MEPE polymer film.

Figure S7. The Fe(II)-MEPE film switching speed histogram

Figure S8. The AC impedance spectra of the ITO-coated PET electrode and the inkjet-printed Fe(II)-MEPE film in the presence of 0.1 M TBACIO₄/ACN.

Figure S9. (a) CV (scan rate: 20 mV/s) and (b) plot of the optical density (Δ OD) versus the injected charge density for the printed Fe(II)-MEPE film. The coloration efficiency (CE) was extracted from the slope of the linear fitting in the linear scheme of the plot.

Figure S10. The coloration efficiency of printed Fe(II)-MEPE films in different layers

Figure S11. The pixelated Fe(II)-MEPE film with 8 × 24 arrays composed of dot pixels (~ 350 μ m × 700 μ m) on ITO-coated PET surface (the minimum scale of the ruler is 1.0 mm).

Figure S12. A microscope image of the surface appearance of the inkjet-printed pixels on an ITOcoated PET film using the Fe(II)-MEPE polymer in ternary solvent at a magnification of 4×16 (inset presents an image at a magnification of 10×16).

Figure S13. The cyclic voltammetry curve (scan rate: 20 mV/s) of the PECD.

Figure S14. The PECD switching speed histogram.

Figure S15. SEM images of ITO-coated PET substrate according to the bending cycles ((a) 0 s, (b) 800 s, (c) 1600 s, and (d) 2400 s).

Figure S16. (a, b) Changes of ΔT in film ECD as a function of number of compression and tension bending cycles (bending radius 5 mm).

Figure S17. Photographs and optical microscope images at a magnification of 4×16 : (a and c) printed film ECD and (b and d) PECD after 2400 bending cycles (inset showed the SEM image of pixelated Fe(II)-MEPE after 2400 bending cycles).

ink	viscosity (mPa s)	surface tension (mN m ⁻¹)		
water	0.8	71.9		
ethylene glycol	17.3	48.4		
ethanol	1.1	21.9		
original ink	2.1	36.8		
water/ethanol/ethylene glycol (100:50:5)	2.2	33.9		

Table S1. The physical parameters of the alternative main solvents and inks.

Table S2. The					specific solvent
for viscosity	number	water (mL)	ethanol (mL)	ethylene glycol (mL)	testing.
	1	100	50	0	
	2	100	50	2	
	3	100	50	5	
	4	100	50	15	
	5	100	50	20	
	6	100	50	30	
	7	100	50	40	

Table S3. The specific solvent ratio of Fe(II)-MEPE inks used for surface tension testing.

number	water (mL)	ethanol (mL)	ethylene glycol (mL)	
1	100	20	5	
2	100	35	5	
3	100	50	5	
4	100	65	5	
5	100	80	5	

Table S4. The EIS fitting results of the electrode.

electrode	R _s	R _{ct1}	R _{ct2}	W	R _{ct3}
	(Ω·cm²)	(Ω·cm²)	(Ω·cm²)	(Ω·cm²)	(Ω·cm²)
ITO-coated PET film	48.9	12.5	5.9×10 ³	_	9.8×10 ⁴
printed Fe(${ m II}$)-MEPE film	55.1	1.0×10 ³	7.8×10 ¹³	7×10 ⁴	—