Supporting Information

Glucose-assisted synthesis of SnS_x coated lithium titanate anode material

for lithium ion battery

Ting Xu^a, Fang Xiang Song^a, Xiang Feng Zhao^a, Li Ju Zhou^a, Qian lin Chen^{a,b,*}

*Corresponding authors at: School of Chemistry and Chemical Engineering, Guizhou

University, Guiyang, 550025, China.

* Corresponding authors.

E-mail: cq11018@163.com (Q. Chen).

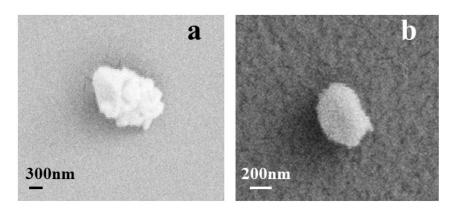


Fig.S1.(a).TEM image of SnS_x@C/LTO, (b) TEM image of LTO

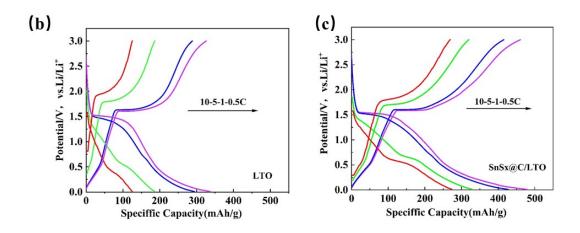


Fig.S2.Charge and discharge curves at different rates, (a) LTO, (b)SnS_x@C/LTO

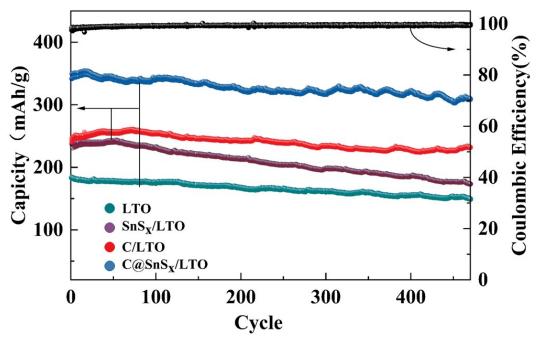


Fig.S3.The long-term cycle performance of LTO and SnS_x@C/LTO cycled 500 times at

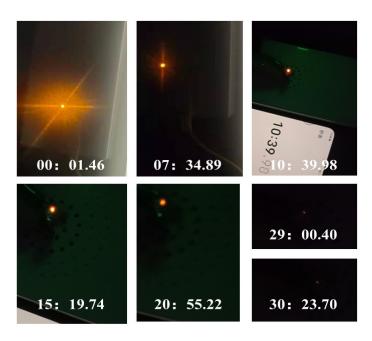


Fig.S4.The experimental phenomenon of lighting a small bulb

Anode	Cycle stability			Ref.
	Current	After	Charge	Kel.
	density	nth	capacity	
	(mA/g)	cycle	(mAh/g)	
This work	10C	500	227.53	the work
	1C (17		425.8	
	5)			
LT-ZnO	1C	250	190	$Li_4Ti_5O_{12}$ coated with ultrathin aluminum-doped zinc oxide films as an
	(175)			anode material for lithium-ion batteries ¹
LTO-LiCoO ₂	1A/g	100	192.1	Lithium cobalt oxide coated lithium zinc titanate anode material with an
	2A/g		163.7	enhanced high rate capability and long lifespan for lithium-ion batteries ²
	3A/g		108.2	
LTO-h-BN	10C		179.5	Hexagonal boron nitride incorporation to achieve high performance
	(175)			Li ₄ Ti ₅ O ₁₂ electrodes ³
	20C		174.1	
SrF ₂ -LTO	5C (87		149	Enhanced electrochemical performance of SrF_2 -modified $Li_4Ti_5O_{12}$
	5)		136	composite anode materials for lithium-ion batteries ⁴
	10C		107	
	20C			
AlF ₃ -LTO	5C	50	140	Synergetic effect of carbon and AlF ₃ coatings on the lithium titanium oxide
	(175)			anode material for high power lithium-ion batteries ⁵
SmF ₃ -LTO	10C		143.8	A porous mooncake-shaped $Li_4Ti_5O_{12}$ anode material modified by SmF_3 and
	(170)			its electrochemical performance in lithium-ion batteries ⁶

MgCo ₂ O ₄ -LTO	1C		300	Synthesis of MgCo ₂ O ₄ -coated Li ₄ Ti ₅ O ₁₂ composite anodes using co-
	(175)			precipitation method for lithium-ion batteries ⁷
LTO-Li ₂ ZrO ₃	500mA	2000	102	Li ₄ Ti ₅ O ₁₂ composited with Li ₂ ZrO ₃ revealing simultaneously meliorated
	/g			ionic and electronic conductivities as high performance anode materials for
				Li-ion batteries ⁸
LTO/Cu _x O	10C	100	137.6	Research on Li ₄ Ti ₅ O ₁₂ /Cu _x O Composite Anode Materials for Lithium-Ion
	(175)			Batteries ⁹
Fe ₂ O ₃ -LTO	10C		109.4	Improved capacity and rate capability of Fe ₂ O ₃ modified Li ₄ Ti ₅ O ₁₂ anode
	(175)			material ¹⁰
Fe ₂ O ₃ /Li ₄ Ti ₅ O ₁	176mA	100	238.9	Graphitized carbon and graphene modified Fe ₂ O ₃ /Li ₄ Ti ₅ O ₁₂ as anode
2	/g			material for lithium ion batteries ¹¹
LTO-Fe ₂ O ₃ nd	1C		216	High rate Li ₄ Ti5O12–Fe ₂ O ₃ and Li ₄ Ti ₅ O ₁₂ –CuO composite anodes for
LTO-CuO	(175)		200	advanced lithium ion batteries ¹²
V ₂ O ₃ -LTO	0.1A/g		300	Interconnected Ultrasmall V2O3 and Li4Ti5O12Particles Construct Robust
				Interfaces for Long-Cycling Anodes of Lithium-Ion Batteries ¹³
Carbon-coated	1000m		181	Carbon-coated Li ₄ Ti ₅ O ₁₂ tablets derived from metal-organic frameworks as
LTO	A/g			anode material for lithium-ion batteries ¹⁴
N-doped	10C	200	136.8	Facile synthesis of N-doped carbon-coated Li ₄ Ti ₅ O ₁₂ microspheres using
carbon-coated	(175)			polydopamine as a carbon source for high rate lithium ion batteries ¹⁵
LTO				
Ti and C	0.1A/g		160	Synthesis and electrochemical performance of nano-sized Li ₄ Ti ₅ O ₁₂ with
coated LTO				double surface modification of Ti(III) and carbon ¹⁶
boron-doped	10C	300	98.4	Improved electrochemical performance of boron-doped carbon-coated
carbon-coated	(175)			lithium titanate as an anode ¹⁷
LTO				
Nitrogen,	10C		160	Nitrogen, sulfur Co-doped porous graphene boosting Li ₄ Ti ₅ O ₁₂ anode
sulfur Co-	(175)			Performance for High-Rate and Long-Life Lithium Ion Batteries ¹⁸
doped porous				
graphene				
boosting LTO				
LTO/SiO2	10C	100	140	Structural and electrochemical characteristics of SiO2 modified Li4Ti5O12 a
	(1600)			anode for lithium-ion batteries ¹⁹

 Table.S1. Comparison of different modification methods

References:

¹ Y. Jin, H. Yu, Y. Gao, X. He, T.A. White, X. Liang, Li4Ti5O12 coated with ultrathin aluminum-doped zinc oxide films as an anode material for lithium-ion batteries, J. POWER SOURCES, 436(2019) 226859.

² H. Tang, J. Zhu, C. Ma, Z. Tang, Lithium cobalt oxide coated lithium zinc titanate anode material with an enhanced high rate capability and long lifespan for lithium-ion batteries, ELECTROCHIM. ACTA, 144(2014) 76-84.

³ O. Ergen, Hexagonal boron nitride incorporation to achieve high performance

Li4Ti5O12 electrodes, AIP ADV, 10(2020) 45040.

⁴ X. Li, X. Zhao, P. Huang, M. Wang, Y. Huang, Y. Zhou, Y. Lin, M. Qu, Z. Yu, Enhanced electrochemical performance of SrF2-modified Li4Ti5O12 composite anode materials for lithium-ion batteries, J. ALLOY. COMPD, 693(2017) 61-69.

⁵ Y. Chung, Y. Shin, Y. Liu, J.S. Park, C.L. Margez, T.A. Greszler, Synergetic effect of carbon and AlF3 coatings on the lithium titanium oxide anode material for high power lithium-ion batteries, J. ELECTROANAL. CHEM., 837(2019) 240-245

⁶ Wang B, Hu S , Gu L , et al. A Porous Mooncake-Shaped Li4Ti5O12 Anode Material Modified by SmF3 and Its Electrochemical Performance in Lithium Ion Batteries[J]. Chemistry - A European Journal, 2020.

⁷ S. Gu, C. Hsieh, M.M. Huq, J. Hsu, J. Li, Synthesis of MgCo2O4-coated Li4Ti5O12 composite anodes using co-precipitation method for lithium-ion batteries, J. SOLID STATE ELECTR., 23(2019) 3197-3207

⁸ Han J P , Zhang B , Bai X , et al. Li4Ti5O12 composited with Li2ZrO3 revealing simultaneously meliorated ionic and electronic conductivities as high performance anode materials for Li-ion batteries[J]. Journal of Power Sources, 2017, 354(JUN.30):16-25.

⁹ Huang, S.; Wen, Z.; Zhu, X.; Yang, X. Research on Li[sub 4]Ti[sub 5]O[sub 12]/Cu[sub x]O Composite Anode Materials for Lithium-Ion Batteries. *J. Electrochem. Soc.* 2005, *152*, A1301.

¹⁰ B. Wang, J. Cao, Y. Liu, T. Zeng, L. Li, Improved capacity and rate capability of Fe2O3 modified Li4Ti5O12 anode material, J. ALLOY. COMPD, 587(2014) 21-25.

¹¹ Q. Wang, M. Lu, J. Miao, S. Yang, T. Wen, J. Sun, Graphitized carbon and graphene modified Fe2O3/Li4Ti5O12 as anode material for lithium ion batteries, SURF. INTERFACE ANAL., 49(2017) 63-70.

¹² M. Hu, Y. Jiang, M. Yan, High rate Li4Ti5O12–Fe2O3 and Li4Ti5O12–CuO composite anodes for advanced lithium ion batteries, J. ALLOY. COMPD, 603(2014) 202-206.

¹³ D. Lei, H. Ye, C. Liu, D. An, J. Ma, W. Lv, B. Li, F. Kang, Y. He, Interconnected Ultrasmall V2O3 and Li4Ti5O12 Particles Construct Robust Interfaces for Long-Cycling Anodes of Lithium-Ion Batteries, ACS APPL MATER INTER, 11(2019) 29993-30000.

¹⁴ Song, Huaihe, Chen, et al. Carbon-coated Li4Ti5O12 tablets derived from metalorganic frameworks as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2017, 708:6-13.

 15 Li H , Shen L , Yin K , et al. Facile synthesis of N-doped carbon-coated Li4Ti5O12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(24):7270-7276.

¹⁶ Wang, Y.;Liu, H.;Wang, K.;Eiji, H.; Wang, Y.; Zhou, H. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. *Journal of Materials Chemistry* **2009**, *19*, 6789.

¹⁷ Hwang, Jang-Yeon, Yun, et al. Improved electrochemical performance of borondoped carbon-coated lithium titanate as an anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A Materials for Energy & Sustainability, 2017.

¹⁸ D Wang, Liu H, Shan Z, et al. Nitrogen, Sulfur Co-doped Porous Graphene Boosts

Li4Ti5O12 Anode Performance for High-Rate and Long-Life Lithium Ion Batteries[J]. Energy Storage Materials, 2020, 27.

¹⁹ Wu, Rui, Chen, et al. Structural and electrochemical characteristics of SiO2 modified Li4Ti5O12 as anode for lithium-ion batteries[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2015.