Supporting Information

An Efficient Cu₂Zn_{1-x}In_xSn(S,Se)₄ Multicomponent Photocathode via One-Step Hydrothermal Approach for Thin Film Solar Cell

Satish S. Patil^a, Sameer N. Nadaf^a, Kishorkumar V. Khot^{a,d}, Rahul M. Mane^a, Suhas S. Mohite^b, Sawanta S. Mali^c, Chang Kook Hong^c, Popatrao N. Bhosale^{a*}

^aMaterials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416 004, India

^bBharati Vidyapeeth Yashwantrao Mohite College, Pune, Maharashtra, 411 038, India^c ^cSchool of Applied Chemical Engineering, Chonnam National University, Gwangju, 61181, South Korea.

^dDepartment of Agrochemicals & Pest Management, Shivaji University, Kolhapur, MS-India, 004.

Email: satishpatil1392@gmail.com,

p_n_bhosale@rediffmail.com

Table of Contents

Table S1: Preparative parameters for hydrothermal synthesis of the $Cu_2Zn_{1-x}In_xSn(S,Se)_4$ thin films.

Table S2: Compositional data for Cu₂Zn_{1-x}In_xSn(S,Se)₄ thin films

Figure S1: Plot of thickness associated with band gap energy of $Cu_2Zn_{1-x}In_xSn(S,Se)_4$ films as a function of In^{3+} ion concentration.

Figure S2: The cross-section SEM images of deposited CZTSSe and In^{3+} doped CZITSSe (I₁-I₄) thin films

Figure S3: Correlation between J_{sc} corresponding to V_{oc} as a function of In^{3+} ion concentration

Table S1: Preparative parameters for hydrothermal synthesis of the $Cu_2Zn_{1-x}In_xSn(S,Se)_4$ thin

films.

Sr. No.	Sample	In ³⁺ ion	Composition	рН	Temperature
	Code	concentration			
		(M/mL)			
1	I ₁	0.00	$Cu_2ZnSn(S,Se)_4$		
2	I ₂	0.025	$Cu_2Zn_{0.075}In_{0.025}Sn(S,Se)_4$	8.2 ± 0.2	$180 \pm 2^{\circ}$ C
3	I ₃	0.05	$Cu_2Zn_{0.05}In_{0.05}Sn(S,Se)_4$		
4	I ₄	0.075	$Cu_2Zn_{0.025}In_{0.075}Sn(S,Se)_4$		

Table S2: Compositional data for $Cu_2Zn_{1-x}In_xSn(S,Se)_4$ thin films temperature.

Sample	Cu	Zn	In	Sn	S	Se	(Zn + In)	Си	(Cu + Zn + In + Sn)
Code							Sn	$\overline{(Zn + In + Sn)}$	(S+Se)
I ₁	25.4	14.4	0.0	14.2	23.5	22.5	1.11	0.84	1.24
I ₂	25.7	11.6	4.2	14.4	22.1	22	1.09	0.85	1.26
I ₃	25.9	10.4	5.6	13.8	21.5	22.8	1.15	0.86	1.25
I ₄	26.2	10.1	6.2	13.4	20.3	25.8	1.21	0.88	1.18

Figure S1. Plot of thickness associated with band gap energy of $Cu_2Zn_{1-x}In_xSn(S,Se)_4$ films as a function of In^{3+} ion concentration.

The thickness of the CZITSSe films is analyzed with surface profilometer. The thickness of the CZITSSe thin films was increased from 540 to 645 nm as function of In^{3+} ion concentration. As a thickness of films increases, the band gap energy was decreased from 1.42 to 1.34 eV.

Figure S2: The cross-section SEM images of deposited CZTSSe and In^{3+} doped CZITSSe (I₁-I₄) thin films

Figure S3: Correlation between J_{sc} corresponding to V_{oc} as a function of In^{3+} ion concentration in photoelectrochemical performance.

Figure S3 (a, b) depicts the correlated data of $Cu_2Zn_{1-x}In_xSn(S,Se)_4$ thin films respectively. As In^{3+} ion concentration increases the short circuit current and open circuit voltage increases.

