Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Figure S2. EDS analysis on the selected regions of the sample sintered at 1300 $^{\circ}\mathrm{C}$

Figure S3. EDS analysis of the sample sintered at 1400 $^{\circ}\mathrm{C}$

Sample	a [Å]	c [Å]	c/a	Volume [Å ³]					
1200	5.871	23.194	3.951	692.3					
1300	5.888	23.237	3.946	697.6					
1400	5.888	23.237	3.946	697.6					

Table S1. Lattice constants of the samples sintered at 1200 °C, 1300 °C and 1400 °C, respectively. Note that the pristine values are a=b=5.892 Å, c=23.198 Å, c/a=3.937, Volume=697.4 Å³

Figure S4. The imaginary part of complex permeability as a function of frequency in K and R bands for the sample sintered at 1200 °C. An almost symmetric loss peak was observed.

Figure S5. Reflection loss as a function of frequency at different thicknesses in K band for the samples sintered at 1200 °C and 1300 °C, respectively.

Sample	M _s (emu/g)	H _a (kOe)	K_1 (×10 ⁵ erg/cm ³)	χ _p (×10 ⁻⁴)	H _c (kOe)	g-factor	f _r (GHz)	RL _{min} (dB)	f _{min} (GHz)	—10 dB Bandwidth (GHz)	—20 dB Bandwidth (GHz)	t _m (mm)	σ (S/cm)
1200	45.33	8.167	1.851	3.912	1.416	2.465	28.18	-15.6	29.88	7.67	0	1.19	3.51×10 ⁻⁵
						2.310	26.5						
1300	46.62	8.194	1.910	4.493	0.916	2.528	29.0	-32.6	29.13	10.61	5.23	1.09	1.80×10 ⁻⁵
						2.955	33.9						
						2.246	25.6						
1400	49.10	8.142	1.999	4.338	0.245	2.290	26.1	-61.8	33.58	13.60	9.15	0.97	1.17×10 ⁻⁴
						2.737	31.2						

Table S2. Experimental, theoretical and numerical fitting parameters of the multielemental co-doped BFO absorbers in the investigated frequency range (18-40 GHz) Figure S6. Comparison of the core performance parameters (RL, bandwidth and matching thickness) of the multi-elemental co-doped BFO absorber with recently developed millimeter-wave absorbers and representative commercial products using (a)-10 dB, (b)-25 dB and (c) -20 dB as the criterion for the determination of effective bandwidth. Note that commercial products disappear in Fig. S6b as their -25 dB bandwidth diminishes to zero.

