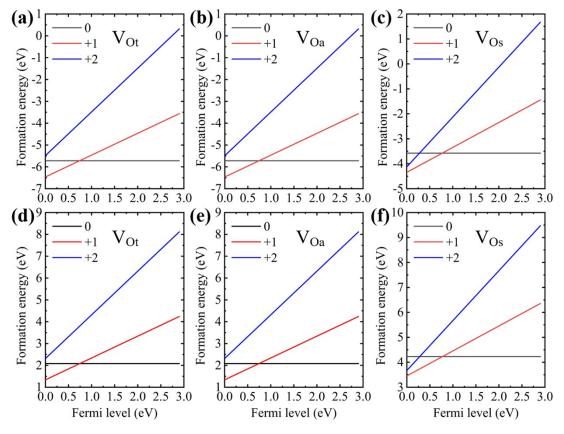
Supporting Information: Oxygen Deficient α-MoO₃ with Promoted Adsorption and State-Quenching of H₂O for Gas Sensor: A DFT Study

Changmeng Huan^{1,2}, Pu Wang^{1,2}, Binghan He^{1,2}, Yongqing Cai^{3*}, Qingqing Ke^{1,2*}

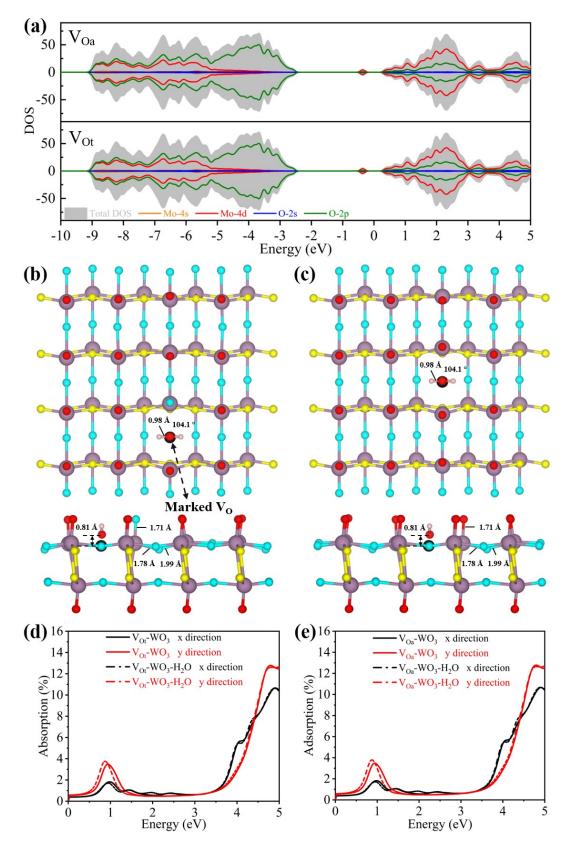
¹School of Microelectronics Science and Technology, Sun Yat-sen university, Zhuhai 519082, China

²Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Zhuhai 519082, China ³Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, China

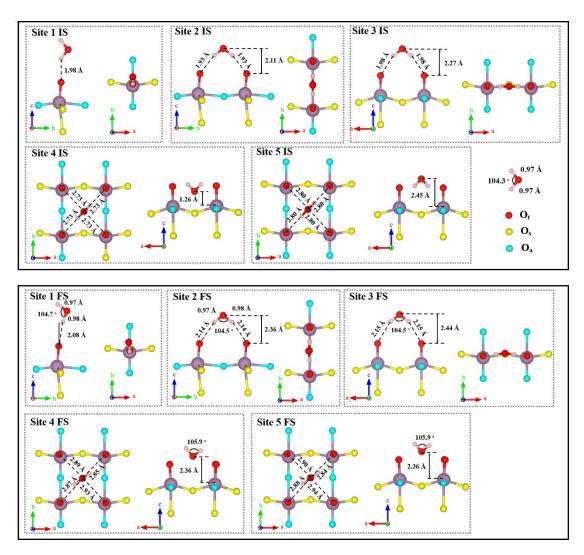

* Corresponding authors

E-mail: yongqingcai@um.edu.mo; keqingq@mail.sysu.edu.cn

The formation energy of charged oxygen vacancies.


Table S1 The relative energies ($^{\Delta}E_0$) and electrostatic potential energy (E_{ep}) of the MoO₃ systems with oxygen vacancies in different valence calculated in PBE method, where the total energy of perfect MoO₃ is set to zero for comparison.

	0		+1		+2	
	ΔE_0 (eV)	$E_{\mathrm{ep}}\left(\mathrm{eV}\right)$	ΔE_0 (eV)	$E_{\rm ep}\left({\rm eV}\right)$	ΔE_0 (eV)	$E_{\rm ep}\left({\rm eV}\right)$
Perfect MoO ₃	0	3.09	/	/	/	/
V_{Ot} - MoO_3	7.01	3.08	11.20	3.59	16.06	4.12
V_{Oa} - MoO_3	7.01	3.10	11.20	3.60	16.06	4.12
V _{Os} -MoO ₃	9.16	3.08	13.32	3.59	17.41	4.12


Fig. S1 Vacancy formation energies calculated in PBE method for the terminal, asymmetric, and symmetric O sites. The top row (a-c) refers to the O-poor environment and the bottom row (d-e) to the O-rich environment.

Comparison of V_{Ot} -MoO₃ and V_{Oa} -MoO₃.

Fig. S2 PDOS (a) of V_{Ot} -MoO₃ and V_{Oa} -MoO₃ systems, and adsorption structures (b and c), and absorption spectra (d and e) with the uptake of water.

Adsorption of H₂O molecule on different sites.

Fig. S3 The five adsorption sites of H₂O on perfect MoO₃ and the corresponding initial (top panel) and final (bottom panel) structures.

Table S2 The adsorption energies of the perfect-MoO₃ with different adsorption sites.

	Site 1	Site 2	Site 3	Site 4	Site 5
$E_{\rm ads}$ (eV)	-0.11	-0.16	0.15	-0.30	-0.30