Supporting information

Highly luminescent broadband phosphors based on acid solvent coordinated two-dimensional layered tin-based perovskites

Lu Zhang, ^a Bobo Yang, ^{*a} Shiliang Mei, ^{*b} Yuxuan Zhu, ^a Rongrong Hu, ^a Jun Zou, ^{*acd}

a. Shanghai Institute of Technology, Shanghai 201418, China. E-mail: boboyang@sit.edu.cn.

b. Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai
200433, China. E-mail: meishiliang@fudan.edu.cn.

c. Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325024, China. E-mail:

zoujun@sit.edu.cn.

d. National Semiconductor Lighting Application System Engineering Technology Research Center, Shanghai
201418, PR China.

Fig. S1 Schematic of the process of emission from the exciton self-trapping state.

Fig. S2 X-ray photoelectron spectroscopy (XPS) of ODASnBr₄, ODASnBr_xI_{4-x} and ODASnI₄. (a) survey spectra of ODASnBr₄, ODASnBr_xI_{4-x} and ODASnI₄; XPS spectra of (b) Sn3d, (c) Br3d, and (d) I3d core levels.

Fig. S3 Photographs of the ODASnBr₄ suspension synthesized by different volumes of (a) HBr and (b) H_3PO_2 respectively.

Fig. S4 The production process of sample with H_3PO_2 of 13 mL. The time at the bottom of the picture represents the time after the solution cooled naturally from 80 °C.

Fig. S5 (a) SEM images and (b) TEM images of ODASnBr₄ (samples HBr 3.0 mL).

Fig. S6 FTIR spectra of ODASnBr₄ perovskite and the reactants used in its synthesis.

Fig. S7 Relative PL intensity of ODASnBr₄ at 65 °C for 120 mins.

Fig. S8 Relative PL intensity of ODASnBr₄-PMMA film heat from 40 to 120 °C.

Fig. S9 Relative luminance efficiency of film at 95 °C for 120 min.

Fig. S10 (a) Relative luminance efficiency of as-fabricated WLEDs and (b) EL spectra of different times.

Chamical formula	2 0 /°			Daf	
Chemical formula	(0 0 2)	(0 0 4)	(0 0 8)	Kel.	
ODASnBr ₄	6.20	12.47	24.77	S1	
ODASnBr ₄ [2%-DCM]	6.18	12.42	-	S 1	
ODASnBr ₄ [2%-CFM]	6.13	12.30	23.7	S 1	
ODASnBr ₄	6.71	13.40	-	S2	
Calculated ODASnBr ₄	6.56	13.15	-	S2	
ODASnBr ₄ [EtOH]	6.70	13.36	29.9	S2	
ODASnBr ₄ [PrOH]	6.41	12.80	-	S2	
ODASnBr ₄ [BuOH]	6.45	12.86	-	S2	
ODASnBr ₄ [PeOH]	6.42	12.80	-	S2	
ODASnBr ₄ [alcohol]	6.12-6.28	-	-	S3	
ODASnBr ₄	6.36	12.72	25.44	This work	

Table S1. The comparison of the XRD with other reported results.

			Spectroscopic properties			
Chemical formula	Experiment method	Microstructure	PL peak (nm)	PLQY (%)	τ (μs)	Ref.
ODASnBr ₄ [2% CFM]	ligand assisted re-precipitation method followed by	spherical microcrystals	570- 598	88 ± 4	>2.4	<u>S1</u>
ODASnBr ₄ [2% DCM]	CFM/DCM treatment		592- 608	83 ± 4	>2.9	51
ODASnBr ₄ [EtOH]	argon gas assisted saturation recrystallization method followed by grinding with	irregular layered structure (20-50 nm)	616	86	3.61	
ODASnBr ₄ [PrOH]		ccrystallization methodregular layeredllowed by grinding withstructure (>100 nm)fferent alcohol dopantscrumby structurecrumby structurecrumby structure	611	83	3.37	S2
ODASnBr₄[BuOH] ODASnBr₄[PeOH]	different alcohol dopants		613 615	87 87	3.24 3.32	
ODASnBr ₄ [alcohol]	wet milling method	2D sheet	572- 601	88±1	>2.9	S3
ODASnBr ₄	saturation recrystallization method in ambient environment	flake microcrystals (5-20 µm)	586	98.22	3.166	This work

Table S2. Comparison of microstructure and spectroscopic properties of ODASnBr₄.

Table S3. The performance parameter of the as-fabricated WLEDs.

LED	drive current	luminous	luminance	CDI	color coordinate	
	(mA)	flux (lm)	efficiency (lm/W)	CKI		
Blue: Yellow = 1:2	50	0.9612	6.408	89.4	(0.3421, 0.3384)	
Blue: Yellow = 1:2	60	1.1817	6.565	89.9	(0.3429, 0.3466)	
Blue: Yellow = 1:2	70	1.4036	6.684	90.3	(0.3439, 0.3526)	
Blue: Yellow = 1:2	80	1.6341	6.808	90.3	(0.3452, 0.3547)	
Blue: Yellow = 1:2	90	1.8650	6.908	90.1	(0.3466, 0.3614)	
Blue: Yellow = 1:4	50	0.9744	6.496	86.1	(0.3227, 0.3209)	
Blue: Yellow = 1:4	60	1.1872	6.596	86.5	(0.3212, 0.3228)	
Blue: Yellow = 1:4	70	1.4084	6.707	86.9	(0.3198, 0.3250)	
Blue: Yellow = 1:4	80	1.6457	6.857	87.4	(0.3162, 0.3291)	
Blue: Yellow = 1:4	90	1.8722	6.934	87.1	(0.3134, 0.3352)	

References:

- S1. S. Wang, J. Popović, S. Burazer, A. Portniagin, F. Liu, K. Low, Z. Duan, Y. Li, Y. Xiong, Y. Zhu, S. V Kershaw, A. B. Djurišić and A. L. Rogach, Adv. Funct. Mater. 2021, 31, 2102182.
- S2. S. Wang, S. V Kershaw and A. L. Rogach, Chem. Mater., 2021, 33, 5413-5421.
- J. Qi, S. Wang, A. Portniagin, S. V Kershaw and A. L. Rogach, Nanomaterials, 2021, 11, 2738-2748.