Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Electronic Supporting Information

$AZn_2(BO_3)Si_2O_5$ (A= Rb, Cs): First Examples of $KBe_2BO_3F_2$ Structure Type in the Borosilicate Family Exhibiting Deep-ultraviolet Cutoff Edge

Tuohetijiang Baiheti,^{a,b} Abudukadi Tudi,^{a,b} Jian Han,^{a,b} Zhihua Yang, *^{a,b} and Shilie Pan*^{a,b}

^a CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

Fax:(86)-991-3838957; Tel: (86)-991-3674558.

To whom correspondence should be addressed: E-mail: slpan@ms.xjb.ac.cn (Shilie Pan)

Empirical formula	RbZn ₂ (BO ₃)Si ₂ O ₅	CsZn ₂ (BO ₃)Si ₂ O ₅
Formula weight	411.20	458.64
Crystal system	Orthorhombic	Orthorhombic
Space group, Z	<i>Cmc</i> 2 ₁ , 4	<i>Cmc</i> 2 ₁ , 4
Unit cell dimensions (Å)	<i>a</i> = 8.308(5)	<i>a</i> = 8.446(3)
	<i>b</i> = 19.345(14)	<i>b</i> = 19.494(7)
	<i>c</i> = 4.935(3)	<i>c</i> = 4.963(2)
Volume (ų)	793.19(9)	817.24(5)
Density (calc) (g/cm ³)	3.443	3.728
θ range for data collection (deg)	2.11-27.52	2.628-27.503
Limiting indices	-10 \leq h \leq 10, -25 \leq k \leq 25, -6 \leq l \leq 6	-10 \leq h \leq 7, -25 \leq k \leq 24, -6 \leq l \leq 6
Reflections collected/unique	9181/955 [R(int) = 0.0906]	9143/1003 [R(int) = 0.0668]
Data/restraints/parameters	955 / 13 / 71	1003/1/71
Completeness (%)	99.6	98.9
Goodness of fit on F_0^2	1.074	1.155
Final R indices $[F_0^2 > 2\delta(F_0^2)]^{[a]}$	$R_1 = 0.0310, wR_2 = 0.0664$	$R_1 = 0.0260, wR_2 = 0.0626$
R indices (all data) ^[a]	$R_1 = 0.0332$, $wR_2 = 0.0677$	$R_1 = 0.0293, wR_2 = 0.0635$
Largest diff. peak and hole (e/ų)	1.191 and -0.762	0.908 and -0.902
Absolute structure parameter	-0.070(13)	0.15(4)

Table S1. Crystal data and structure refinements for RbZn₂(BO₃)Si₂O₅ and CsZn₂(BO₃)Si₂O₅.

 ${}^{[a]}R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o| \text{ and } wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2} \text{ for } F_o^2 > 2\sigma (F_o^2).$

Table S2. The final atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²× 10³) for **RbZn₂(BO₃)Si₂O₅** and **CsZn₂(BO₃)Si₂O₅**, U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor, and the bond valence sum for each atom in asymmetric unit.

CsZn ₂ (BO ₃)Si ₂ O ₅					
Atom	Х	у	Z	U(eq)	BVS
Cs(1)	10000	6140(1)	3614(3)	24(1)	1.028
Zn(1)	8105(1)	7956(1)	3635(4)	13(1)	2.108
Si(1)	13141(2)	4544(1)	3556(16)	30(1)	4.327
B(1)	5000	7287(6)	3520(60)	13(2)	2.847
O(1)	15000	4425(5)	3550(50)	47(3)	2.112
O(2)	12255(5)	3854(2)	3700(30)	23(1)	2.146
O(3)	12602(8)	5048(8)	5980(40)	74(3)	2.257
O(4)	6426(7)	7322(3)	4881(11)	18(1)	1.943
O(5)	10000	7731(4)	5723(15)	18(2)	1.976

$RbZn_2(BO_3)Si_2O_5$					
Atom	Х	у	Z	U(eq)	BVS
Rb(1)	10000	8832(1)	3975(1)	24(1)	0.834
Zn(1)	8075(1)	7034(1)	4051(1)	12(1)	2.072
Si(1)	13088(1)	10454(1)	3705(2)	25(1)	4.213
B(1)	5000	7729(2)	3918(11)	13(1)	2.949
O(1)	12141(2)	11142(1)	4232(5)	16(1)	2.002
O(2)	15000	10584(1)	3735(7)	26(1)	2.066
O(3)	12608(3)	9842(1)	5684(4)	31(1)	2.152
O(4)	6457(2)	7711(1)	5183(4)	19(1)	1.967
O(5)	10000	7275(2)	6060(5)	19(1)	2.046

CsZn ₂ (BO ₃)Si ₂ O ₅				
Cs(1)-O(2)#1	3.094(12)	Zn(1)-O(5)	1.957(4)	
Cs(1)-O(2)#2	3.094(12)	Zn(1)-O(4)	1.980(6)	
Cs(1)-O(2)#3	3.162(13)	Zn(1)-O(4)#7	1.980(6)	
Cs(1)-O(2)#4	3.162(13)	Si(1)-O(2)	1.541(5)	
Cs(1)-O(5)	3.273(8)	Si(1)-O(3)#2	1.574(18)	
Cs(1)-O(3)	3.277(16)	Si(1)-O(1)	1.587(2)	
Cs(1)-O(3)#5	3.277(16)	Si(1)-O(3)	1.618(17)	
Cs(1)-O(3)#1	3.451(17)	B(1)-O(4)#9	1.383(16)	
Cs(1)-O(3)#2	3.451(17)	B(1)-O(4)	1.383(16)	
Zn(1)-O(2)#8	1.893(4)	B(1)-O(5)#7	1.39(3)	
O(2)#1-Cs(1)-O(2)#2	76.0(4)	O(3)-Cs(1)-O(4)#6	118.9(3)	
O(2)#1-Cs(1)-O(2)#3	179.0(3)	O(3)#5-Cs(1)-O(4)#6	156.6(3)	
O(2)#2-Cs(1)-O(2)#3	104.98(14)	O(3)#1-Cs(1)-O(4)#6	123.9(3)	
O(2)#1-Cs(1)-O(2)#4	104.98(14)	O(3)#2-Cs(1)-O(4)#6	98.4(2)	
O(2)#2-Cs(1)-O(2)#4	179.0(3)	O(2)#1-Cs(1)-O(4)#7	53.57(12)	
O(2)#3-Cs(1)-O(2)#4	74.1(3)	O(2)#2-Cs(1)-O(4)#7	78.71(16)	
O(2)#1-Cs(1)-O(5)	104.40(13)	O(2)#3-Cs(1)-O(4)#7	126.08(12)	
O(2)#2-Cs(1)-O(5)	104.40(13)	O(2)#4-Cs(1)-O(4)#7	101.50(15)	
O(2)#3-Cs(1)-O(5)	75.01(13)	O(5)-Cs(1)-O(4)#7	52.87(15)	
O(2)#4-Cs(1)-O(5)	75.01(13)	O(3)-Cs(1)-O(4)#7	156.6(3)	
O(2)#1-Cs(1)-O(3)	134.2(3)	O(3)#5-Cs(1)-O(4)#7	118.9(3)	
O(2)#2-Cs(1)-O(3)	82.6(4)	O(3)#1-Cs(1)-O(4)#7	98.4(2)	
O(2)#3-Cs(1)-O(3)	46.6(3)	O(3)#2-Cs(1)-O(4)#7	123.9(3)	
O(2)#4-Cs(1)-O(3)	96.9(4)	O(4)#6-Cs(1)-O(4)#7	37.74(17)	
O(5)-Cs(1)-O(3)	120.1(3)	O(2)#8-Zn(1)-O(5)	120.6(4)	
O(2)#1-Cs(1)-O(3)#5	82.6(4)	O(2)#8-Zn(1)-O(4)	107.5(2)	
O(2)#2-Cs(1)-O(3)#5	134.2(3)	O(5)-Zn(1)-O(4)	106.3(3)	
O(2)#3-Cs(1)-O(3)#5	96.9(4)	O(2)#8-Zn(1)-O(4)#7	110.2(5)	
O(2)#4-Cs(1)-O(3)#5	46.6(3)	O(5)-Zn(1)-O(4)#7	105.9(3)	
O(5)-Cs(1)-O(3)#5	120.1(3)	O(4)-Zn(1)-O(4)#7	105.45(19)	
O(3)-Cs(1)-O(3)#5	84.3(5)	O(2)-Si(1)-O(3)#2	109.7(10)	
O(5)-Cs(1)-O(3)#2	139.2(2)	O(2)-Si(1)-O(1)	110.7(4)	
O(3)-Cs(1)-O(3)#2	43.32(7)	O(3)#2-Si(1)-O(1)	111.0(10)	
O(3)#5-Cs(1)-O(3)#2	97.31(14)	O(2)-Si(1)-O(3)	111.0(10)	
O(3)#1-Cs(1)-O(3)#2	79.1(5)	O(3)#2-Si(1)-O(3)	102.5(2)	
O(2)#1-Cs(1)-O(4)#6	78.71(16)	O(1)-Si(1)-O(3)	111.7(10)	
O(2)#2-Cs(1)-O(4)#6	53.57(12)	O(4)#9-B(1)-O(4)	121(2)	
O(2)#3-Cs(1)-O(4)#6	101.50(15)	O(4)#9-B(1)-O(5)#7	119.4(10)	
O(2)#4-Cs(1)-O(4)#6	126.08(12)	O(4)-B(1)-O(5)#7	119.4(10)	

Table S3. Selected bond distances (Å) and angles (deg) for $RbZn_2(BO_3)Si_2O_5$ and $CsZn_2(BO_3)Si_2O_5$.

O(5)-Cs(1)-O(4	4)#6	52.87(15)				
Symmetry trans	formations	used to generate e	equivalent atoms:			
#1 -x+2,-y+1,z-	1/2 #2	x,-y+1,z-1/2	#3 x,-y+1,z+1/2	#4 -x+	-2,-y+1,z+1/2	
#5 -x+2,y,z	#6 x+1/2,-	y+3/2,z-1/2	#7 -x+3/2,-y+3/2	2,z-1/2	#8 x-1/2,y+1/2,z	
#9 -x+1,y,z	#10 -x+3/2	2,-y+3/2,z+1/2	#11 -x+3,y,z	#12 x+1/2	,y-1/2,z	

RbZn₂(BO₃)Si₂O₅

Rb(1)-O(1)#1	2.940(2)	Zn(1)-O(4)	1.9575(19)
Rb(1)-O(1)#2	2.940(2)	Zn(1)-O(4)#7	2.0096(19)
Rb(1)-O(3)#3	3.038(2)	Si(1)-O(1)	1.5683(16)
Rb(1)-O(3)	3.038(2)	Si(1)-O(3)	1.585(2)
Rb(1)-O(1)#4	3.146(2)	Si(1)-O(2)	1.6082(8)
Rb(1)-O(1)#5	3.146(2)	Si(1)-O(3)#2	1.647(2)
Rb(1)-O(5)	3.182(3)	B(1)-O(4)#9	1.362(3)
Zn(1)-O(1)#6	1.8940(15)	B(1)-O(4)	1.362(3)
Zn(1)-O(5)	1.9384(15)	B(1)-O(5)#7	1.410(6)
O(1)#1-Rb(1)-O(1)#2	74.45(8)	O(3)-Rb(1)-O(5)	121.29(5)
O(1)#1-Rb(1)-O(3)#3	77.21(5)	O(1)#4-Rb(1)-O(5)	75.43(5)
O(1)#2-Rb(1)-O(3)#3	129.91(5)	O(1)#5-Rb(1)-O(5)	75.43(5)
O(1)#1-Rb(1)-O(3)	129.91(5)	O(1)#6-Zn(1)-O(5)	122.21(10)
O(1)#2-Rb(1)-O(3)	77.21(5)	O(1)#6-Zn(1)-O(4)	108.31(8)
O(3)#3-Rb(1)-O(3)	91.01(9)	O(5)-Zn(1)-O(4)	105.07(9)
O(1)#1-Rb(1)-O(1)#4	176.64(6)	O(1)#6-Zn(1)-O(4)#7	110.34(9)
O(1)#2-Rb(1)-O(1)#4	108.31(5)	O(5)-Zn(1)-O(4)#7	105.49(9)
O(3)#3-Rb(1)-O(1)#4	99.46(5)	O(4)-Zn(1)-O(4)#7	103.88(6)
O(3)-Rb(1)-O(1)#4	50.03(5)	O(1)-Si(1)-O(3)	113.91(12)
O(1)#1-Rb(1)-O(1)#5	108.31(5)	O(1)-Si(1)-O(2)	111.21(12)
O(1)#2-Rb(1)-O(1)#5	176.64(6)	O(3)-Si(1)-O(2)	111.05(15)
O(3)#3-Rb(1)-O(1)#5	50.03(5)	O(1)-Si(1)-O(3)#2	108.93(12)
O(3)-Rb(1)-O(1)#5	99.46(5)	O(3)-Si(1)-O(3)#2	103.68(7)
O(1)#4-Rb(1)-O(1)#5	68.87(7)	O(2)-Si(1)-O(3)#2	107.58(16)
O(1)#1-Rb(1)-O(5)	105.86(5)	O(4)#9-B(1)-O(4)	125.3(4)
O(1)#2-Rb(1)-O(5)	105.86(5)	O(4)#9-B(1)-O(5)#7	117.3(2)
O(3)#3-Rb(1)-O(5)	121.28(5)	O(4)-B(1)-O(5)#7	117.3(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+2,z-1/2	#2 x,-y+2,z-1/2	#3 -x+2,y,z	#4 x,-y+2,z+1/2
#5 -x+2,-y+2,z+1/2	#6 x-1/2,y-1/2,z	#7 -x+3/2,-y+3/	/2,z-1/2
#8 -x+3/2,-y+3/2,z+1/	2 #9 -x+1,y,z	#10 x+1/2,y+1/2	2,z #11 -x+3,y,z

Figure S1. Powder XRD patterns of (a) RbZn₂(BO₃)Si₂O₅, and (b) CsZn₂(BO₃)Si₂O₅.

Figure S2. (a) 3D crystal structure of γ -KBe₂B₃O₇ view along the *a* axis, (b) alignment pattern of BO₃ groups in the crystal structure of CsZn₂(BO₃)Si₂O₅, (c) and alignment pattern of BO₃ groups in the crystal structure of Cs₃Zn₆B₉O₂₁.

Figure S3. IR spectra of RbZn₂(BO₃)Si₂O₅ (red), and CsZn₂(BO₃)Si₂O₅ (blue).

Figure S4. UV-vis-NIR diffuse reflectance spectrum of RbZn₂(BO₃)Si₂O₅.

Figure S5. The TG-DSC curves of polycrystalline samples of $RbZn_2(BO_3)Si_2O_5$ (a), and $CsZn_2(BO_3)Si_2O_5$ (b).

Figure S6. Powder SHG measurements for KDP, and $RbZn_2(BO_3)Si_2O_5$ (at 1064 nm, Q-switched Nd: YAG laser).

Figure S7. Calculated electronic band structure (a), total and partial densities of states (b), of RbZn₂(BO₃)Si₂O₅.

Figure S8. SHG density of occupied (a), and unoccupied (b) for RbZn₂(BO₃)Si₂O₅.

Figure S9. Calculated birefringence curves for $RbZn_2(BO_3)Si_2O_5$ (a), and $CsZn_2(BO_3)Si_2O_5$ (b).