Supporting Information

In-Situ, Seed-Free Formation of Ruddlesden–Popper Perovskite Cs₂PbI₂Cl₂ Nanowires/PbI₂ Heterojunction for High-Responsivity, Self-Powered Photodetector

Yanshuang Ba,^{a,#} Xiaoping Xie,^{b,#} Weidong Zhu,^{a,*}JunXiao Ma,^a Gang Liu,^b Peng Dong,^b Dazheng Chen,^a Jincheng Zhang,^a Chunfu Zhang,^a Yue Hao^a

^aState Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, 710071, P.R. China.

^bQinghai Huanghe Hydropower Development CO., LTD., Xining, Qinghai 810008, China.

[#]The authors contribute equally to this work.

Figure S1. Surficial SEM image of FTO/TiO₂ substrate.

Figure S2. XPS survey spectra of PbI₂ film and Cs₂PbI₂Cl₂ nanowires/PbI₂ heterojunction obtained with 6 mg/mL CsCl/MeOH.

Figure S3. EDS mapping image of a Cs₂PbI₂Cl₂ nanowire.

Figure S4. Linear-scale dark J-V curves of self-powered PDs fabricated with pristine PbI₂ film and Cs₂PbI₂Cl₂ nanowires/PbI₂ heterojunctions formed with 4, 6, and 8 mg/mL CsCl/MeOH.

Figure S5. Equivalent circuit model for fitting the EIS Nyquist curves of self-powered PDs fabricated with pristine PbI₂ film and Cs₂PbI₂Cl₂ nanowires/PbI₂ heterojunction produced with 6 mg/mL CsCl/MeOH.