Supporting Information

In situ **sulfuration synthesis of heterostructure MoS2-Mo2C@C for boosting photocatalytic H2-production activity of TiO²**

Jinfeng Liu^a, Ping Wang^{*a}, Lulu Gao^a, Xuefei Wang^a, Huogen Yu^{*ab}

^a School of Chemistry, Chemical Engineering and Life Sciences and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China

b Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China

> *Corresponding authors. Tel: $+86(27)87749379$; E-mail: wangping0904@whut.edu.cn (Ping Wang); huogenyu@163.com (Huogen Yu)

SI Experimental

SI-1 Materials

Titanium dioxide (TiO₂-P25), sulfur powder (S), ammonium heptamolybdate $((NH_4)_6Mo_7O_{24}·4H_2O$, AR), cadmium nitrate $(Cd(NO_3)_2·4H_2O)$, Zinc nitrate $(Zn(NO₃)₂·6H₂O)$, sodium sulfide (Na₂S·9H₂O), sodium sulfate (Na₂SO₄), methanol $(CH₃OH)$, and ethyl alcohol $(C₂H₅OH)$ were of analytical grade from Shanghai Chemical Reagent Ltd. (PR China) and used without further purification.

SI-2 Based on the XRD patterns, the weight ratio of MoS_2 and Mo_2C in the MoS_2 - $Mo₂C@C$ samples can be estimated using the following formula S1 [Ref. S1]:

$$
W_{\rm A} = \frac{I_{\rm A}}{I_{\rm A} + (I_{\rm B}/RIR_{\rm B}/RIR_{\rm A}))}
$$

$$
W_{\rm B} = \frac{I_{\rm B}}{I_{\rm B} + (I_{\rm A}/RIR_{\rm A}/RIR_{\rm B}))}
$$

where I_A and I_B are the intensities of the strongest lines of the X-ray diffraction patterns of $MoS₂$ and $Mo₂C$, respectively. The *RIR* values of $MoS₂$ (JCPDS Card No. $37-1492$) and Mo₂C (JCPDS Card No. 35-0787) were obtained by the matrix-flushing method according to the Chung's report [Ref. S2].

SI-3 Characterization

X-ray diffraction (XRD) (D/MAXRB, RIGAKU, Japan), FTIR (Nicolet 6700, Thermo Electron Scientific Instruments, USA), Raman microscope (InVia, Renishaw, UK), and transmission electron microscopy (TEM) (Talos F200S, Thermo Fisher, USA) with an energy-dispersive X-ray spectroscopy (EDS) were used to character the microstructures and morphologies of the photocatalysts. Nitrogen adsorption-desorption isotherms were analyzed by a nitrogen adsorption-desorption apparatus (ASAP 2020, Micromeritics, USA). Elemental analyses were characterized X-ray photoelectron spectroscopy (XPS) (ESCALAB 250Xi, Thermo Scientific, USA). UV-vis spectrophotometer (UV-2450, Shimadzu, Japan) was used to perform the optical absorption property. Time-resolved photoluminescence (TRPL) (FLS920, Edinburgh Instruments, UK) was applied to measure the fluorescence lifetimes.

SI-4 Photoelectrochemical measurements

Photoelectrochemical curves were measured on an electrochemical analyzer (CHI660E, China) in a standard three-electrode configuration. The prepared samples were loaded on fluorine-doped tin oxide (FTO) conductor glass, a standard Ag/AgCl electrode and a platinum foil as the working electrodes, reference electrode and counter electrode, respectively, with $Na₂SO₄$ (0.5 M) as electrolyte solution. The working electrodes were prepared on fluorine-doped tin oxide (FTO) conductor glass in a typically method. First, photocatalysts (4 mg) were dispersed in a solution which mixed with 1 mL of anhydrous ethanol and 100 μL of D-520 Nafion solution (5%, w/w, in water and 1-propanol, Alfa Aesar), and then ultrasonicated for 30 min to achieve the suspension solution. The suspension was spread on the FTO glass which dried at 60°C for one night. Linear sweep voltammetry (LSV) curves were obtained in the potential ranging of -0.4 to -1.5 V with a scan rate of 10 mV s^{-1} . Transient photocurrent responses (*i*-*t*) curves were conducted at a static potential of +0.5 V. Electrochemical impedance spectroscopy (EIS) was performed at a frequency range of 10-2-10⁴ Hz. The Mott-Schottky plots were measured at a fixed frequency of 3000 Hz to determine the flat band potential. A 3W LED lamp (365 nm) was served as the irradiator.

SI-5 Measurement of photocatalytic hydrogen evolution

Photocatalytic hydrogen production activity was evaluated with 50 mg of photocatalyst dispersed in a 100 mL three-necked Pyrex glass containing 80 mL of methyl alcohol (10 vol%) under four LEDs (3 W, 365 nm, Shenzhen Lamplic Science Co. Ltd., China). The system was bubbled with N_2 for 15 min to guarantee hydrogen production process occurring in an inert atmosphere. After four 365 nm-LED lights $irradiated the system, 400 uL of gas was injected into a gas chromato graph$ (Shimadzu, GC-2014C, Japan) with a thermal conductivity detector and a 5 Å molecular sieve column with nitrogen as a carrier gas. The apparent quantum efficiency (AQE) was calculated according to the equation S2:

$$
AQE(\%) = \frac{number\ of\ reacted\ electrons}{number\ of\ incident\ photons} \times 100\%
$$

$$
= \frac{number\ of\ evolved\ H_2\ molecules\ \times 2}{number\ of\ incident\ photons} \times 100\% \quad S2
$$

SI-6 Fluorescent lifetime of the samples

The lifetime of photogenerated charge carries of samples are fitted by a biexponential function as the equation S3 [Ref 3]:

$$
I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)
$$
 S3

where τ_1 and τ_2 are the lifetime of photogenerated charge carries, and A_1 , and A_2 are

the corresponding amplitudes. The short lifetime component for τ_1 represents the radiation-recombination time of photogenerated carriers, while the longer lifetime component for *τ*² originates from the nonradioactive recombination of the relaxation effect for photogenerated charges and the *τav* represents the average excited-state lifetime.

References

[1] Y. Lu, J. Zhang, F. Wang, X. Chen, Z. Feng, and C. Li, K_2SO_4 -assisted hexagonal/monoclinic WO₃ phase junction for efficient photocatalytic degradation of RhB. ACS Applied Energy Materials, 1 (2018) 2067-2077.

[2] H. Frank, Quantitative interpretation of X-ray diffraction patterns of mixtures. I. matrix-flushing method for quantitative multicomponent analysis. Journal of Applied Crystal 7 (1974) 519-525.

[3] X. Wang, C. Liow, A. Bisht, X. Liu, T. Sum, X. Chen, S. Li, Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion, Advanced Materials, 27 (2015) 2207- 2214.

Figure captions

Fig. S1 Nitrogen adsorption-desorption isotherms of (a) TiO_2 , (b) $Mo_2C@C/TiO_2$, (c) $MoS_2-Mo_2C@C/TiO_2$, and (d) $MoS_2@C/TiO_2$.

Fig. S2 The photocatalytic H₂-evolution performance of MoS₂-Mo₂C ω C/TiO₂ photocatalyst under different pH value (A) and methanol concentration (B).

Fig. S3 (A) XRD patterns and (B) XPS spectra of Mo 3d for the $MoS₂$ - $Mo₂C@C/TiO₂$ sample: (a) before and (b) after the cyclic photocatalytic hydrogenproduction reaction.

Fig. S4 Linear sweep voltammetry curves of (a) $Mo_2C@C$, (b) $MoS_2-Mo_2C@C$, and (c) $MoS₂(*a*)C$.

Fig. S5 Mott-Schottky plots of (a) TiO_2 and (b) $MoS_2-Mo_2C@/TiO_2$ photocatalyst in **Fig. S5** Mott-Schottky plots of (a) TiO_2 and (b) $MoS_2-MO_2C@/TiO_2$ photocatalyst in $Na₂SO₄$ solution (0.1 mol L⁻¹).

Fig. S6 (A, B) XRD patterns and (C, D) UV-vis spectra of (a) CdS, (a') $MoS₂$ - $Mo_2C@C/CdS$, (b) ZnS, and (b') $MoS_2-Mo_2C@C/ZnS$.

Samples	Specific surface area	Pore volume
	$(m^2 g^{-1})$	$\rm (cm^3 \ g^{-1})$
TiO ₂	54.41	0.52
$Mo_2C(\partial C/T_1IO_2)$	45.58	0.60
$MoS_2-Mo_2C(\partial C/TiO_2)$	44.05	0.63
$MoS2(a)C/TiO2$	42.11	0.57

Table S1 The specific surface area and pore volume of various photocatalysts.

Samples	H_2 -evolution rate	AQE
	(µmol h^{-1} g ⁻¹)	$(\%)$
TiO ₂	10	0.03
$MoS_2-Mo_2C@C-500/TiO_2$	860	2.58
$MoS_2-Mo_2C@C-600/TiO_2$	940	2.82
$MoS_2-Mo_2C@C-700/TiO_2 (MoS_2-$	1160	3.48
$Mo_2C(\partial_CCTiO_2)$		
$MoS_2-Mo_2C@C-800/TiO_2$	800	2.4
Mo ₂ C@C/TiO ₂	610	1.83
$MoS2(a)C/TiO2$	300	0.9

Table S2 The H₂-evolution performance and apparent quantum efficiency (AQE) of the various samples.

Fig. S1 Nitrogen adsorption-desorption isotherms of (a) TiO_2 , (b) $Mo_2C@C/TiO_2$, (c)

 $MoS_2-Mo_2C@C/TiO_2$, and (d) $MoS_2@C/TiO_2$.

Fig. S2 The photocatalytic H₂-evolution performance of $MoS₂-Mo₂C@C/TiO₂$ photocatalyst under different pH value (A) and methanol concentration (B).

Fig. S3 (A) XRD patterns and (B) XPS spectra of Mo 3d for the $MoS₂$ - $Mo₂CaC/TiO₂$ sample: (a) before and (b) after the cyclic photocatalytic hydrogenproduction reaction.

Fig. S4 Linear sweep voltammetry curves of (a) $Mo₂Ca_C$, (b) $Mo₂~Ma₂Ca_C$, and

(c) $MoS₂@C.$

Fig. S5 Mott-Schottky plots of (a) TiO_2 and (b) $MoS_2-Mo_2C@/TiO_2$ photocatalyst in $Na₂SO₄$ solution (0.1 mol L⁻¹).

Fig. S6 (A, B) XRD patterns and (C, D) UV-vis spectra of (a) CdS, (a') MoS₂- $Mo_2C@C/CdS$, (b) ZnS, and (b') $MoS_2-Mo_2C@C/ZnS$.