Encapsulation of 2D MoS₂ Nanosheets into 1D Carbon Nanobelts as Anodes with Enhanced Lithium/Sodium Storage Properties

Bingqing Ye¹, Lei Xu¹, Wenbo Wu¹, Yuliang Ye¹, Zunxian Yang^{*1,2}, Jingwei Ai¹,

Yinglin Qiu¹, Zhipeng Gong¹, Yuanqing Zhou¹, Qiaocan Huang¹, Zihong Shen¹, Fushan Li^{1,2}, Tailiang Guo^{1,2}, Sheng Xu^{1,2}

¹National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China.

²Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory For Optoelectronic Information of China, Fuzhou,350108, P.R. China

Supporting Information

Captions

Table S1 A comparison of the cycling performance of $MoS_2@C$ with the recently reported MoS_2/C - based anode materials for Li-ion batteries in other literature.

Fig.S1 XRD patterns of pure α-MoO₃ NBs, MoO₃@C-22 NBs, MoO₃@C-23 NBs,

^{*} Corresponding author should be addressed. Tel.: +86 591 8789 3299; Fax: +86 591 8789 2643 E-mail: yangzunxian@hotmail.com (Z. Yang)

MoO₃@C-24 NBs, and MoO₃@C-25 NBs, respectively.

Fig.S2 TGA curve of MoS₂@C-23 NBs.

Fig.S3 (a) N2 adsorption-desorption isotherms and (b) pore size distribution of $MoS_2@C-23$ NBs.

Fig.S4 (a) Low-magnification and **(b)** High-magnification SEM image of pure MoS₂ nanosheets.

Fig.S5 (a, b) Low-magnification and **(c, d)** High-magnification TEM images of MoS₂@C-23 NBs.

Fig.S6 SEM images of (a) MoO₃@C-22 NBs, (b) MoO₃@C-24 NBs, (c) MoO₃@C-

25 NBs, (d) MoS₂@C-22 NBs, (e) MoS₂@C-24 NBs, and (f) MoS₂@C-25 NBs.

Fig.S7 (a) TEM image of MoO₃@C-13 NBs. (b) TEM image of MoO₃@C-33 NBs.

Fig.S8 (a, b) SEM images of MoS₂@C-13 NBs. (c) Low-magnification and (d) Highmagnification SEM images of MoS₂@C-33 NBs.

Fig. S9 XRD patterns of MoS₂@C-13 NBs and MoS₂@C-33 NBs.

Fig.S10 (a, b) SEM images, (c) TEM image, (d) HRTEM image, (e) XRD patterns, and (f-i) EDS mapping of C@MoS₂.

Fig.S11 Rate capability of $MoS_2@C-22$ NBs, $MoS_2@C-24$ NBs, and $MoS_2@C-25$ NBs cycled at various rates from 0.1 to 2.0 Ag⁻¹.

Fig.S12 Rate capability of MoS₂@C cycled at various rates from 0.1 to 2.0 Ag⁻¹.

Fig.S13 Cycling performance of MoS₂@C-22 NBs, MoS₂@C-24 NBs, and MoS₂@C-25 NBs at a current density of 0.2 Ag⁻¹.

Fig. S14 Cycling performance of $C@MoS_2$ at a current density of 0.2 Ag⁻¹.

Fig. S15 SEM images of MoS₂@C-23 NBs after 200 cycles.

Fig. S16 (a) EIS and (b) plots of Z' vs. $\omega^{-1/2}$ of MoS₂@C-22 NBs, MoS₂@C-24 NBs, and MoS₂@C-25 NBs.

Fig. S17 (a) EIS and (b) plots of Z' vs. $\omega^{-1/2}$ of C@MoS₂.

MoS ₂ /C-based anode materials	Current density (mAg ⁻¹)	(Cycles)	Capacity (mAhg ⁻¹)	Reference
MoS ₂ @NSC nanoprisms	100	300	800	[1]
3DANCNT@MoS ₂ composite	200 1600	200 200	893.4 645	[2]
MoS ₂ /N-CNT	200	100	1115	[3]
MoS ₂ @C nanospheres	100 2000	100 500	1119 530	[4]
CNT@MoS2@C	100	200	982	[5]
MoS ₂ @PZS-C nanospheres	100	100	1245	[6]
MoS ₂ @C/MoS ₂ core-Sheath nanowires	100	150	838	[7]
MoS ₂ nanosheets/ N, O-codoped carbon matrix	67	100	946.3	[8]
Bowl-like C@MoS ₂ nanocomposites	100 1000	100 1000	798 526	[9]
MoS ₂ /N-doped carbon nanobelts	100 1000	100 500	901 675	[10]
C@MoS ₂ @NC hollow spheres	100	10	747	[11]
3D FNC-MoS ₂ nanospheres	100 1200	50 400	920 700	[12]
NC@MoS ₂ @C nanotubes	100 1000	100 500	663.3 703.5	[13]
MoS ₂ -PVP@NC nanospheres	1000	300	607.1	[14]
MoS ₂ @C-23 NBs	200 1000	200 800	1189 626	This work

Table S1.

Fig.S1

Fig.S2

Fig.S3

Fig.S4

Fig.S5

Fig.S6

Fig.S7

Fig.S8

Fig.S9

Fig.S10

Fig.S11

Fig.S12

Fig.S13

Fig. S14

Fig. S15

Fig. S16

Fig. S17

References

[1] Y. Liu, J. Zhu, J. Xu, S. Liu, L. Li, C. Zhang, T. Liu, High-temperature solventfree sulfidation of MoO3 confined in a polypyrrole shell: MoS2 nanosheets encapsulated in a nitrogen, sulfur dual-doped carbon nanoprism for efficient lithium storage. Nanoscale, 2018, 10(16): 7536-7543.

[2] X. J. Zhao, G. Wang, X. J. Liu, X. L. Zheng, H. Wang, Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries. Nano Research, 2018, 11(7): 3603-3618.

[3] T. J. Wu, M. J. Jing, Y. Liu, X. B. Ji, Binding low crystalline MoS2 nanoflakes on nitrogen-doped carbon nanotube: towards high-rate lithium and sodium storage.
Journal of Materials Chemistry A, 2019, 7(11): 6439-6449.

[4] J. G. Wang, H. Y. Liu, R. Zhou, X. R. Liu, B. Q. Wei, Onion-like nanospheres organized by carbon encapsulated few-layer MoS2 nanosheets with enhanced lithium storage performance. Journal of Power Sources, 2019, 413: 327-333.

[5] Z. J. Zhang, H. L. Zhao, Y. Q. Teng, X. W. Chang, Q. Xia, Z. L. Li, J. J. Fang, Z.

H. Du, K. Swierczek, Carbon-Sheathed MoS2 Nanothorns Epitaxially Grown on
CNTs: Electrochemical Application for Highly Stable and Ultrafast Lithium Storage.
Advanced Energy Materials, 2018, 8(7): 1700174.

[6] Z. P. Zhou, F. Chen, L. Wu, T. R. Kuang, X. H. Liu, J. T. Yang, P. Fan, Z. D. Fei,

Z. P. Zhao, M. Q. Zhong, Heteroatoms-doped 3D carbon nanosphere cages embedded

with MoS2 for lithium-ion battery. Electrochimica Acta, 2020, 332: 135490.

[7] H. H. Sun, J. G. Wang, X. Z. Zhang, C. J. Li, F. Liu, W. J. Zhu, W. Hua, Y. Y. Li,
M. H. Shao, Nanoconfined Construction of MoS2@C/MoS2 Core-Sheath Nanowires
for Superior Rate and Durable Li-Ion Energy Storage. Acs Sustainable Chemistry &
Engineering, 2019, 7(5): 5346-5354.

[8] M. S. Han, Z. J. Lin, J. Yu, Ultrathin MoS2 nanosheets homogenously embedded in aN,O-codoped carbon matrix for high-performance lithium and sodium storage.
Journal of Materials Chemistry A, 2019, 7(9): 4804-4812.

[9] X. E. Zhang, X. Chen, H. J. Ren, G. W. Diao, M. Chen, S. W. Chen, Bowl-like C@MoS2 Nanocomposites as Anode Materials for Lithium-Ion Batteries: Enhanced Stress Buffering and Charge/Mass Transfer. Acs Sustainable Chemistry & Engineering, 2020, 8(27): 10065-10072.

[10] H. H. Sun, J. G. Wang, W. Hua, J. J. Wang, D. Nan, B. H. Guo, Hierarchical MoS2/N-doped carbon nanobelts assembled by interlaced nanosheets as high performance Li-ion battery anode. Journal of Alloys and Compounds, 2020, 821: 153339.

[11] F. Z. Wang, F. G. Li, L. Ma, M. J. Zheng, Few-Layer MoS2 Nanosheets Encapsulated in N-Doped Carbon Hollow Spheres as Long-Life Anode Materials for Lithium-Ion Batteries. Chemistry-a European Journal, 2019, 25(64): 14598-14603.

[12] Xin Wang, Siming Fei, Shoushuang Huang, Chenghao Wu, Junru Zhao, Zhiwen Chen, Kajsa Uvdal, Zhangjun Hu, MoS2 nanosheets inlaid in 3D fibrous N-doped carbon spheres for lithium-ion batteries and electrocatalytic hydrogen evolution reaction. Carbon, 2019, 150: 363-370.

[13] J. G. Zong, F. Wang, J. P. Zhao, X. Fan, M. S. Zhao, S. Yang, X. P. Song, Rational design of strong chemical coupling carbon coated N-doped C@MoS2@C nanotubes for high-performance lithium storage. Journal of Alloys and Compounds, 2021, 861: 157981.

[14] J. Bai, B. C. Zhao, X. Wang, H. Y. Ma, K. Z. Li, Z. T. Fang, H. Li, J. M. Dai, X.
B. Zhu, Y. P. Sun, Yarn ball-like MoS2 nanospheres coated by nitrogen-doped carbon for enhanced lithium and sodium storage performance. Journal of Power Sources, 2020, 465: 228282.